import gradio as gr from transformers import AutoImageProcessor, AutoModelForObjectDetection import torch from PIL import Image, ImageDraw processor = AutoImageProcessor.from_pretrained("joortif/practica_2_detr") model = AutoModelForObjectDetection.from_pretrained("joortif/practica_2_detr") id2label = { 1: "kangaroo", } model.config.id2label = id2label def detect_objects(img: Image.Image): inputs = processor(images=img, return_tensors="pt") outputs = model(**inputs) target_sizes = torch.tensor([img.size[::-1]]) # results = processor.post_process_object_detection( outputs, target_sizes=target_sizes, threshold=0.3 )[0] draw = ImageDraw.Draw(img) for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] draw.rectangle(box, outline="red", width=3) draw.text((box[0], box[1]), f"{model.config.id2label[label.item()]}: {score:.2f}", fill="red") return img example_images = [ "00111.jpg", "00148.jpg" ] demo = gr.Interface( fn=detect_objects, inputs=gr.Image(type="pil"), outputs=gr.Image(type="pil"), title="Detección de Objetos - joortif/practica_2", examples=example_images ) demo.launch()