Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from tensorflow.lite.python.interpreter import Interpreter | |
def tflite_detect_images( | |
modelpath, | |
lblpath, | |
image_path, | |
min_conf=0.1, | |
): | |
# Grab filenames of all images in test folder | |
# Load the label map into memory | |
with open(lblpath, "r") as f: | |
labels = [line.strip() for line in f.readlines()] | |
# Load the Tensorflow Lite model into memory | |
interpreter = Interpreter(model_path=modelpath) | |
interpreter.allocate_tensors() | |
# Get model details | |
input_details = interpreter.get_input_details() | |
output_details = interpreter.get_output_details() | |
# print("input", input_details) | |
# print("output_details________________________") | |
# print("output", output_details) | |
height = input_details[0]["shape"][1] | |
width = input_details[0]["shape"][2] | |
# print(height, width) | |
float_input = input_details[0]["dtype"] == np.float32 | |
input_mean = 127.5 | |
input_std = 127.5 | |
# Loop over every image and perform detection | |
# Load image and resize to expected shape [1xHxWx3] | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
imH, imW, _ = image.shape | |
image_resized = cv2.resize(image, (width, height)) | |
input_data = np.expand_dims(image_resized, axis=0) | |
# print("before_float", input_data) | |
# Normalize pixel values if using a floating model (i.e. if model is non-quantized) | |
if float_input: | |
# print("truue") | |
input_data = (np.float32(input_data) - input_mean) / input_std | |
# print("after float_mean", input_data) | |
# Perform the actual detection by running the model with the image as input | |
interpreter.set_tensor(input_details[0]["index"], input_data) | |
interpreter.invoke() | |
# Retrieve detection results | |
boxes = interpreter.get_tensor(output_details[1]["index"])[ | |
0 | |
] # Bounding box coordinates of detected objects | |
classes = interpreter.get_tensor(output_details[3]["index"])[ | |
0 | |
] # Class index of detected objects | |
scores = interpreter.get_tensor(output_details[0]["index"])[ | |
0 | |
] # Confidence of detected objects | |
# print(boxes) | |
# print("clas", classes) | |
# print("scores", scores) | |
# Loop over all detections and draw detection box if confidence is above minimum threshold | |
for i in range(len(scores)): | |
if (scores[i] > min_conf) and (scores[i] <= 1.0): | |
# Get bounding box coordinates and draw box | |
# Interpreter can return coordinates that are outside of image dimensions, need to force them to be within image using max() and min() | |
ymin = int(max(1, (boxes[i][0] * imH))) | |
xmin = int(max(1, (boxes[i][1] * imW))) | |
ymax = int(min(imH, (boxes[i][2] * imH))) | |
xmax = int(min(imW, (boxes[i][3] * imW))) | |
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (10, 255, 0), 2) | |
# Draw label | |
# object_name = labels[ | |
# int(classes[i]) | |
# ] # Look up object name from "labels" array using class index | |
# # label = "%s: %d%%" % ( | |
# # object_name, | |
# # int(scores[i] * 100), | |
# # ) # Example: 'person: 72%' | |
# label = object_name | |
# labelSize, baseLine = cv2.getTextSize( | |
# label, cv2.FONT_HERSHEY_SIMPLEX, 0.7, 2 | |
# ) # Get font size | |
# # Define the position and rotation of the main text | |
# # main_x = 20 | |
# # main_y = 180 | |
# main_rotation = 90 | |
# # Calculate the rotation matrix for the main text | |
# main_rotation_matrix = cv2.getRotationMatrix2D((xmax, ymin), main_rotation, 1) | |
# # Create a black image with the same size as the input image | |
# text_img = np.zeros_like(image) | |
# label_ymin = max( | |
# ymin , labelSize[1] + 10 | |
# ) # Make sure not to draw label too close to top of window | |
# cv2.rectangle( | |
# text_img, | |
# (xmin, label_ymin - labelSize[1] - 10), | |
# (xmin + labelSize[0], label_ymin + baseLine - 10), | |
# (255, 255, 255), | |
# cv2.FILLED, | |
# ) # Draw white box to put label text in | |
# cv2.putText( | |
# text_img, | |
# label, | |
# (xmin, label_ymin - 7), | |
# cv2.FONT_HERSHEY_SIMPLEX, | |
# 0.7, | |
# (0, 0, 0), | |
# 2, | |
# ) # Draw label text | |
# rotated_text_img = cv2.warpAffine(text_img, main_rotation_matrix, (image.shape[1], image.shape[0])) | |
# image = cv2.add(image, rotated_text_img) | |
# detections.append([object_name, scores[i], xmin, ymin, xmax, ymax]) | |
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# cv2.imwrite("output.jpg", image) | |
return image | |
def show_image(img): | |
PATH_TO_MODEL = "detect.tflite" # Path to .tflite model file | |
PATH_TO_LABELS = "labelmap.txt" # Path to labelmap.txt file | |
min_conf_threshold = 0.3 # Confidence threshold (try changing this to 0.01 if you don't see any detection results | |
# Run inferencing function! | |
cv_image = tflite_detect_images( | |
PATH_TO_MODEL, PATH_TO_LABELS, img, min_conf_threshold | |
) | |
# # Convert To PIL Image | |
# image = Image.open(img) | |
# print(type(image)) | |
# # Convert the image to a NumPy array | |
# image_array = np.array(image) | |
# print(type(image_array)) | |
return cv_image | |
app = gr.Interface( | |
fn=show_image, | |
inputs=gr.Image(label="Input Image", type="filepath"), | |
outputs=gr.Image(label="Output Image", type="filepath"), | |
) | |
app.launch(share=True) | |