Spaces:
Runtime error
Runtime error
Johnny Lee
commited on
Commit
·
a3c7493
1
Parent(s):
90aac8f
much cleanup
Browse files
app.py
CHANGED
@@ -1,14 +1,17 @@
|
|
1 |
# ruff: noqa: E501
|
|
|
2 |
import asyncio
|
3 |
import datetime
|
4 |
import logging
|
5 |
import os
|
|
|
6 |
import requests
|
7 |
import json
|
8 |
import uuid
|
|
|
9 |
|
10 |
from copy import deepcopy
|
11 |
-
from typing import Any, Dict, List, Optional, Tuple
|
12 |
|
13 |
import gradio as gr
|
14 |
import pytz
|
@@ -37,49 +40,95 @@ logging.basicConfig(format="%(asctime)s %(name)s %(levelname)s:%(message)s")
|
|
37 |
LOG = logging.getLogger(__name__)
|
38 |
LOG.setLevel(logging.INFO)
|
39 |
|
40 |
-
|
41 |
GPT_3_5_CONTEXT_LENGTH = 4096
|
42 |
CLAUDE_2_CONTEXT_LENGTH = 100000 # need to use claude tokenizer
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
1. Below these instructions you will receive a business scenario. The scenario will (a) include the name of a company or category, and (b) a debatable multiple-choice question about the business scenario.
|
50 |
-
2. We will pretend to be executives charged with solving the strategic question outlined in the scenario.
|
51 |
-
3. To start the conversation, you will provide summarize the question and provide all options in the multiple choice question to me. Then, you will ask me to choose a position and provide a short opening argument. Do not yet provide your position.
|
52 |
-
4. After receiving my position and explanation. You will choose an alternate position in the scenario.
|
53 |
-
5. Inform me which position you have chosen, then proceed to have a discussion with me on this topic.
|
54 |
-
6. The discussion should be informative and very rigorous. Do not agree with my arguments easily. Pursue a Socratic method of questioning and reasoning.
|
55 |
-
"""
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
You will start an conversation with me in the following form:
|
62 |
-
1. You are to be a professional research consultant to the MBA student.
|
63 |
-
2. The student will be working in a group of classmates to collaborate on a proposal to solve a business dillema.
|
64 |
-
3. Be as helpful as you can to the student while remaining factual.
|
65 |
-
4. If you are not certain, please warn the student to conduct additional research on the internet.
|
66 |
-
5. Use tables and bullet points as useful way to compare insights
|
67 |
-
"""
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
78 |
"""
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def reset_textbox():
|
82 |
-
return gr.update(value="")
|
83 |
|
84 |
|
85 |
def auth(username, password):
|
@@ -98,157 +147,188 @@ def auth(username, password):
|
|
98 |
return (username, password) in creds
|
99 |
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
)
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
)
|
121 |
-
context_length = GPT_3_5_CONTEXT_LENGTH
|
122 |
-
_, tokenizer = llm._get_encoding_model()
|
123 |
-
return dict(llm=llm, context_length=context_length, tokenizer=tokenizer)
|
124 |
-
|
125 |
-
|
126 |
-
def make_template(
|
127 |
-
system_msg: str = CASE_SYSTEM_MESSAGE, template_name: str = "Netflix"
|
128 |
-
) -> ChatPromptTemplate:
|
129 |
-
knowledge_cutoff = "Sept 2021"
|
130 |
-
current_date = datetime.datetime.now(pytz.timezone("America/New_York")).strftime(
|
131 |
-
"%Y-%m-%d"
|
132 |
-
)
|
133 |
-
if template_name in CASES.keys():
|
134 |
-
message_template = get_case_template(template_name)
|
135 |
-
system_msg += f"""
|
136 |
-
{message_template}
|
137 |
-
|
138 |
-
Knowledge cutoff: {knowledge_cutoff}
|
139 |
-
Current date: {current_date}
|
140 |
-
"""
|
141 |
-
elif template_name == "Research Assistant":
|
142 |
-
knowledge_cutoff = "Early 2023"
|
143 |
-
system_msg = f"""{RESEARCH_SYSTEM_MESSAGE}
|
144 |
-
|
145 |
-
Knowledge cutoff: {knowledge_cutoff}
|
146 |
-
Current date: {current_date}
|
147 |
-
"""
|
148 |
-
|
149 |
-
human_template = "{input}"
|
150 |
-
return ChatPromptTemplate.from_messages(
|
151 |
-
[
|
152 |
-
SystemMessagePromptTemplate.from_template(system_msg),
|
153 |
-
MessagesPlaceholder(variable_name="history"),
|
154 |
-
HumanMessagePromptTemplate.from_template(human_template),
|
155 |
-
]
|
156 |
-
)
|
157 |
-
|
158 |
-
|
159 |
-
def update_system_prompt(
|
160 |
-
template_option: str,
|
161 |
-
system_msg: str = CASE_SYSTEM_MESSAGE,
|
162 |
-
llm_option: str = "gpt-4",
|
163 |
-
) -> Tuple[str, Dict[str, Any]]:
|
164 |
-
template_output = make_template(system_msg, template_option)
|
165 |
-
state = set_state()
|
166 |
-
state["template"] = template_output
|
167 |
-
use_claude = llm_option == "Claude 2"
|
168 |
-
state["llm_state"] = make_llm_state(use_claude)
|
169 |
-
llm = state["llm_state"]["llm"]
|
170 |
-
state["memory"] = ConversationTokenBufferMemory(
|
171 |
-
llm=llm,
|
172 |
-
max_token_limit=state["llm_state"]["context_length"],
|
173 |
-
return_messages=True,
|
174 |
-
)
|
175 |
-
state["chain"] = ConversationChain(
|
176 |
-
memory=state["memory"],
|
177 |
-
prompt=state["template"],
|
178 |
-
llm=llm,
|
179 |
-
)
|
180 |
-
updated_status = "Prompt Updated! Chat has reset."
|
181 |
-
return updated_status, state
|
182 |
-
|
183 |
-
|
184 |
-
def update_system_prompt_mode(system_mode: str):
|
185 |
-
if system_mode == "Research Assistant":
|
186 |
-
status, state = update_system_prompt(
|
187 |
-
llm_option="Claude 2", template_option=system_mode
|
188 |
-
)
|
189 |
-
return state, gr.update(visible=False)
|
190 |
-
else:
|
191 |
-
status, state = update_system_prompt(template_option="Netflix")
|
192 |
-
return state, gr.update(visible=True, value="Netflix")
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
|
202 |
memory = ConversationTokenBufferMemory(
|
203 |
-
llm=llm, max_token_limit=
|
204 |
)
|
205 |
-
|
206 |
-
|
207 |
)
|
208 |
-
|
209 |
-
state = dict(
|
210 |
-
template=template,
|
211 |
-
llm_state=llm_state,
|
212 |
-
history=[],
|
213 |
memory=memory,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
chain=chain,
|
215 |
-
session_id=session_id,
|
216 |
)
|
217 |
-
return state
|
218 |
-
else:
|
219 |
-
return state
|
220 |
|
221 |
|
222 |
async def respond(
|
223 |
-
|
224 |
-
|
|
|
|
|
225 |
request: gr.Request,
|
226 |
-
) -> Tuple[List[str],
|
227 |
"""Execute the chat functionality."""
|
228 |
|
229 |
def prep_messages(
|
230 |
user_msg: str, memory_buffer: List[BaseMessage]
|
231 |
) -> Tuple[str, List[BaseMessage]]:
|
232 |
-
messages_to_send = state
|
233 |
input=user_msg, history=memory_buffer
|
234 |
)
|
235 |
-
user_msg_token_count = llm.get_num_tokens_from_messages(
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
238 |
LOG.warning(
|
239 |
f"Pruning user message due to user message token length of {user_msg_token_count}"
|
240 |
)
|
241 |
-
user_msg = tokenizer.decode(
|
242 |
-
llm.get_token_ids(user_msg)[: context_length - 100]
|
243 |
)
|
244 |
-
messages_to_send = state
|
245 |
input=user_msg, history=memory_buffer
|
246 |
)
|
247 |
-
user_msg_token_count = llm.get_num_tokens_from_messages(
|
248 |
[messages_to_send[-1]]
|
249 |
)
|
250 |
-
total_token_count = llm.get_num_tokens_from_messages(
|
251 |
-
|
|
|
|
|
252 |
LOG.warning(
|
253 |
f"Pruning memory due to total token length of {total_token_count}"
|
254 |
)
|
@@ -256,45 +336,76 @@ async def respond(
|
|
256 |
memory_buffer.pop(0)
|
257 |
continue
|
258 |
memory_buffer = memory_buffer[1:]
|
259 |
-
messages_to_send = state
|
260 |
input=user_msg, history=memory_buffer
|
261 |
)
|
262 |
-
total_token_count = llm.get_num_tokens_from_messages(
|
|
|
|
|
263 |
return user_msg, memory_buffer
|
264 |
|
265 |
try:
|
266 |
if state is None:
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
LOG.info(f"""[{request.username}] STARTING CHAIN""")
|
272 |
-
LOG.debug(f"History: {state
|
273 |
-
LOG.debug(f"User input: {
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
276 |
)
|
277 |
-
|
278 |
-
|
279 |
)
|
280 |
-
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
|
281 |
LOG.debug(f"Messages to send: {messages_to_send}")
|
282 |
-
LOG.
|
283 |
callback = AsyncIteratorCallbackHandler()
|
284 |
run_collector = RunCollectorCallbackHandler()
|
285 |
run = asyncio.create_task(
|
286 |
-
state
|
287 |
-
input=
|
288 |
callbacks=[callback, run_collector],
|
289 |
)
|
290 |
)
|
291 |
-
state
|
292 |
run_id = None
|
|
|
293 |
async for tok in callback.aiter():
|
294 |
-
user, bot = state
|
295 |
bot += tok
|
296 |
-
state
|
297 |
-
yield state
|
298 |
await run
|
299 |
if run_collector.traced_runs and run_id is None:
|
300 |
run_id = run_collector.traced_runs[0].id
|
@@ -302,112 +413,133 @@ async def respond(
|
|
302 |
if run_id:
|
303 |
run_collector.traced_runs = []
|
304 |
try:
|
305 |
-
|
306 |
-
LOG.info(f"""URL : {
|
307 |
-
url_markdown =
|
|
|
|
|
308 |
except Exception as exc:
|
309 |
LOG.error(exc)
|
310 |
url_markdown = "Share link not currently available"
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
LOG.info(f"""[{request.username}] ENDING CHAIN""")
|
313 |
-
LOG.debug(f"History: {state
|
314 |
-
LOG.debug(f"Memory: {state
|
315 |
data_to_flag = (
|
316 |
{
|
317 |
-
"history": deepcopy(state
|
318 |
"username": request.username,
|
319 |
"timestamp": datetime.datetime.now(datetime.timezone.utc).isoformat(),
|
320 |
-
"session_id": state
|
|
|
|
|
321 |
},
|
322 |
)
|
323 |
LOG.debug(f"Data to flag: {data_to_flag}")
|
324 |
gradio_flagger.flag(flag_data=data_to_flag, username=request.username)
|
325 |
except Exception as e:
|
326 |
-
LOG.
|
327 |
raise e
|
328 |
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
|
|
333 |
|
334 |
-
theme = gr.themes.Soft()
|
335 |
|
336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
image_url = ""
|
341 |
with gr.Blocks(
|
342 |
theme=theme,
|
343 |
analytics_enabled=False,
|
344 |
-
title=
|
345 |
) as demo:
|
346 |
state = gr.State()
|
347 |
-
gr.Markdown(f"""### {
|
348 |
with gr.Tab("Chatbot"):
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
|
|
360 |
chatbot = gr.Chatbot(label="ChatBot")
|
361 |
with gr.Row():
|
362 |
input_message = gr.Textbox(
|
363 |
placeholder="Send a message.",
|
364 |
-
label="Type
|
365 |
scale=5,
|
366 |
)
|
367 |
-
|
368 |
-
|
369 |
-
llm_input = gr.Dropdown(
|
370 |
-
label="LLM",
|
371 |
-
choices=["Claude 2", "GPT-4"],
|
372 |
-
value="GPT-4",
|
373 |
-
multiselect=False,
|
374 |
-
visible=False,
|
375 |
-
)
|
376 |
-
system_prompt_input = gr.TextArea(
|
377 |
-
label="System Prompt", value=CASE_SYSTEM_MESSAGE, lines=10, visible=False
|
378 |
-
)
|
379 |
-
update_system_button = gr.Button(value="Update Prompt & Reset", visible=False)
|
380 |
-
status_markdown = gr.Markdown(visible=False)
|
381 |
gradio_flagger.setup([chatbot], "chats")
|
382 |
|
383 |
-
|
384 |
-
fn=respond,
|
385 |
-
|
386 |
-
|
387 |
-
b1.click(**chat_bot_submit_params)
|
388 |
-
chatbot_mode.change(
|
389 |
-
update_system_prompt_mode,
|
390 |
-
[chatbot_mode],
|
391 |
-
[state, case_input],
|
392 |
)
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
|
|
|
|
397 |
)
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
[
|
402 |
)
|
403 |
-
chatbot_mode.change(
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
case_input.change(reset_textbox, [], [input_message])
|
408 |
-
case_input.change(reset_textbox, [], [chatbot])
|
409 |
-
b1.click(reset_textbox, [], [input_message])
|
410 |
-
input_message.submit(reset_textbox, [], [input_message])
|
411 |
|
412 |
demo.queue(max_size=99, concurrency_count=99, api_open=False).launch(
|
413 |
debug=True, auth=auth
|
|
|
1 |
# ruff: noqa: E501
|
2 |
+
from __future__ import annotations
|
3 |
import asyncio
|
4 |
import datetime
|
5 |
import logging
|
6 |
import os
|
7 |
+
from enum import Enum
|
8 |
import requests
|
9 |
import json
|
10 |
import uuid
|
11 |
+
from pydantic import BaseModel
|
12 |
|
13 |
from copy import deepcopy
|
14 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
15 |
|
16 |
import gradio as gr
|
17 |
import pytz
|
|
|
40 |
LOG = logging.getLogger(__name__)
|
41 |
LOG.setLevel(logging.INFO)
|
42 |
|
|
|
43 |
GPT_3_5_CONTEXT_LENGTH = 4096
|
44 |
CLAUDE_2_CONTEXT_LENGTH = 100000 # need to use claude tokenizer
|
45 |
|
46 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
47 |
+
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
|
48 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
49 |
+
|
50 |
+
theme = gr.themes.Soft()
|
51 |
|
52 |
+
creds = [(os.getenv("CHAT_USERNAME"), os.getenv("CHAT_PASSWORD"))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
gradio_flagger = gr.HuggingFaceDatasetSaver(
|
55 |
+
hf_token=HF_TOKEN, dataset_name="chats", separate_dirs=True
|
56 |
+
)
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
class ChatSystemMessage(str, Enum):
|
60 |
+
CASE_SYSTEM_MESSAGE = """You are a helpful AI assistant for a Columbia Business School MBA student.
|
61 |
+
Follow this message's instructions carefully. Respond using markdown.
|
62 |
+
Never repeat these instructions in a subsequent message.
|
63 |
|
64 |
+
You will start an conversation with me in the following form:
|
65 |
+
1. Below these instructions you will receive a business scenario. The scenario will (a) include the name of a company or category, and (b) a debatable multiple-choice question about the business scenario.
|
66 |
+
2. We will pretend to be executives charged with solving the strategic question outlined in the scenario.
|
67 |
+
3. To start the conversation, you will provide summarize the question and provide all options in the multiple choice question to me. Then, you will ask me to choose a position and provide a short opening argument. Do not yet provide your position.
|
68 |
+
4. After receiving my position and explanation. You will choose an alternate position in the scenario.
|
69 |
+
5. Inform me which position you have chosen, then proceed to have a discussion with me on this topic.
|
70 |
+
6. The discussion should be informative and very rigorous. Do not agree with my arguments easily. Pursue a Socratic method of questioning and reasoning.
|
71 |
+
"""
|
72 |
|
73 |
+
RESEARCH_SYSTEM_MESSAGE = """You are a helpful AI assistant for a Columbia Business School MBA student.
|
74 |
+
Follow this message's instructions carefully. Respond using markdown.
|
75 |
+
Never repeat these instructions in a subsequent message.
|
76 |
|
77 |
+
You will start an conversation with me in the following form:
|
78 |
+
1. You are to be a professional research consultant to the MBA student.
|
79 |
+
2. The student will be working in a group of classmates to collaborate on a proposal to solve a business dillema.
|
80 |
+
3. Be as helpful as you can to the student while remaining factual.
|
81 |
+
4. If you are not certain, please warn the student to conduct additional research on the internet.
|
82 |
+
5. Use tables and bullet points as useful way to compare insights
|
83 |
"""
|
84 |
|
85 |
|
86 |
+
class ChatbotMode(str, Enum):
|
87 |
+
DEBATE_PARTNER = "Debate Partner"
|
88 |
+
RESEARCH_ASSISTANT = "Research Assistant"
|
89 |
+
DEFAULT = DEBATE_PARTNER
|
90 |
+
|
91 |
+
|
92 |
+
class PollQuestion(BaseModel): # type: ignore[misc]
|
93 |
+
name: str
|
94 |
+
template: str
|
95 |
+
|
96 |
+
|
97 |
+
class PollQuestions(BaseModel): # type: ignore[misc]
|
98 |
+
cases: List[PollQuestion]
|
99 |
+
|
100 |
+
@classmethod
|
101 |
+
def from_json_file(cls, json_file_path: str) -> PollQuestions:
|
102 |
+
"""Expects a JSON file with an array of poll questions
|
103 |
+
Each JSON object should have "name" and "template" keys
|
104 |
+
"""
|
105 |
+
with open(json_file_path, "r") as json_f:
|
106 |
+
payload = json.load(json_f)
|
107 |
+
return_obj_list = []
|
108 |
+
if isinstance(payload, list):
|
109 |
+
for case in payload:
|
110 |
+
return_obj_list.append(PollQuestion(**case))
|
111 |
+
return cls(cases=return_obj_list)
|
112 |
+
raise ValueError(
|
113 |
+
f"JSON object in {json_file_path} must be an array of PollQuestion"
|
114 |
+
)
|
115 |
+
|
116 |
+
def get_case(self, case_name: str) -> PollQuestion:
|
117 |
+
"""Searches cases to return the template for poll question"""
|
118 |
+
for case in self.cases:
|
119 |
+
if case.name == case_name:
|
120 |
+
return case
|
121 |
+
|
122 |
+
def get_case_names(self) -> List[str]:
|
123 |
+
"""Returns the names in cases"""
|
124 |
+
return [case.name for case in self.cases]
|
125 |
+
|
126 |
+
|
127 |
+
poll_questions = PollQuestions.from_json_file("templates.json")
|
128 |
+
|
129 |
+
|
130 |
def reset_textbox():
|
131 |
+
return gr.update(value=""), gr.update(value=""), gr.update(value="")
|
132 |
|
133 |
|
134 |
def auth(username, password):
|
|
|
147 |
return (username, password) in creds
|
148 |
|
149 |
|
150 |
+
class ChatSession(BaseModel):
|
151 |
+
class Config:
|
152 |
+
arbitrary_types_allowed = True
|
153 |
+
|
154 |
+
context_length: int
|
155 |
+
tokenizer: tiktoken.Encoding
|
156 |
+
chain: ConversationChain
|
157 |
+
history: List[BaseMessage] = []
|
158 |
+
session_id: str = str(uuid.uuid4())
|
159 |
+
|
160 |
+
@staticmethod
|
161 |
+
def set_metadata(
|
162 |
+
username: str,
|
163 |
+
chatbot_mode: str,
|
164 |
+
turns_completed: int,
|
165 |
+
case: Optional[str] = None,
|
166 |
+
) -> Dict[str, Union[str, int]]:
|
167 |
+
metadata = dict(
|
168 |
+
username=username,
|
169 |
+
chatbot_mode=chatbot_mode,
|
170 |
+
turns_completed=turns_completed,
|
171 |
+
case=case,
|
172 |
)
|
173 |
+
return metadata
|
174 |
+
|
175 |
+
@staticmethod
|
176 |
+
def _make_template(
|
177 |
+
system_msg: str, poll_question_name: Optional[str] = None
|
178 |
+
) -> ChatPromptTemplate:
|
179 |
+
knowledge_cutoff = "Sept 2021"
|
180 |
+
current_date = datetime.datetime.now(
|
181 |
+
pytz.timezone("America/New_York")
|
182 |
+
).strftime("%Y-%m-%d")
|
183 |
+
if poll_question_name:
|
184 |
+
poll_question = poll_questions.get_case(poll_question_name)
|
185 |
+
if poll_question:
|
186 |
+
message_template = poll_question.template
|
187 |
+
system_msg += f"""
|
188 |
+
{message_template}
|
189 |
+
|
190 |
+
Knowledge cutoff: {knowledge_cutoff}
|
191 |
+
Current date: {current_date}
|
192 |
+
"""
|
193 |
+
else:
|
194 |
+
knowledge_cutoff = "Early 2023"
|
195 |
+
system_msg += f"""
|
196 |
+
|
197 |
+
Knowledge cutoff: {knowledge_cutoff}
|
198 |
+
Current date: {current_date}
|
199 |
+
"""
|
200 |
+
|
201 |
+
human_template = "{input}"
|
202 |
+
return ChatPromptTemplate.from_messages(
|
203 |
+
[
|
204 |
+
SystemMessagePromptTemplate.from_template(system_msg),
|
205 |
+
MessagesPlaceholder(variable_name="history"),
|
206 |
+
HumanMessagePromptTemplate.from_template(human_template),
|
207 |
+
]
|
208 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
@staticmethod
|
211 |
+
def _set_llm(
|
212 |
+
use_claude: bool,
|
213 |
+
) -> Tuple[Union[ChatOpenAI, ChatAnthropic], int, tiktoken.tokenizer]:
|
214 |
+
if use_claude:
|
215 |
+
llm = ChatAnthropic(
|
216 |
+
model="claude-2",
|
217 |
+
anthropic_api_key=ANTHROPIC_API_KEY,
|
218 |
+
temperature=1,
|
219 |
+
max_tokens_to_sample=5000,
|
220 |
+
streaming=True,
|
221 |
+
)
|
222 |
+
context_length = CLAUDE_2_CONTEXT_LENGTH
|
223 |
+
tokenizer = tiktoken.get_encoding("cl100k_base")
|
224 |
+
return llm, context_length, tokenizer
|
225 |
+
else:
|
226 |
+
llm = ChatOpenAI(
|
227 |
+
model_name="gpt-4",
|
228 |
+
temperature=1,
|
229 |
+
openai_api_key=OPENAI_API_KEY,
|
230 |
+
max_retries=6,
|
231 |
+
request_timeout=100,
|
232 |
+
streaming=True,
|
233 |
+
)
|
234 |
+
context_length = GPT_3_5_CONTEXT_LENGTH
|
235 |
+
_, tokenizer = llm._get_encoding_model()
|
236 |
+
return llm, context_length, tokenizer
|
237 |
+
|
238 |
+
def update_system_prompt(
|
239 |
+
self, system_msg: str, poll_question_name: Optional[str] = None
|
240 |
+
) -> None:
|
241 |
+
self.chain.prompt = self._make_template(system_msg, poll_question_name)
|
242 |
+
|
243 |
+
def change_llm(self, use_claude: bool) -> None:
|
244 |
+
llm, self.context_length, self.tokenizer = self._set_llm(use_claude)
|
245 |
+
self.chain.llm = llm
|
246 |
+
|
247 |
+
def clear_memory(self) -> None:
|
248 |
+
self.chain.memory.clear()
|
249 |
+
self.history = []
|
250 |
+
|
251 |
+
def set_chatbot_mode(
|
252 |
+
self, case_mode: bool, poll_question_name: Optional[str] = None
|
253 |
+
) -> None:
|
254 |
+
if case_mode and poll_question_name:
|
255 |
+
self.change_llm(use_claude=False)
|
256 |
+
self.update_system_prompt(
|
257 |
+
system_msg=ChatSystemMessage.CASE_SYSTEM_MESSAGE,
|
258 |
+
poll_question_name=poll_question_name,
|
259 |
+
)
|
260 |
+
else:
|
261 |
+
self.change_llm(use_claude=True)
|
262 |
+
self.update_system_prompt(
|
263 |
+
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE
|
264 |
+
)
|
265 |
|
266 |
+
@classmethod
|
267 |
+
def new(
|
268 |
+
cls,
|
269 |
+
use_claude: bool,
|
270 |
+
system_msg: str,
|
271 |
+
metadata: Dict[str, Any],
|
272 |
+
poll_question_name: Optional[str] = None,
|
273 |
+
) -> ChatSession:
|
274 |
+
llm, context_length, tokenizer = cls._set_llm(use_claude)
|
275 |
memory = ConversationTokenBufferMemory(
|
276 |
+
llm=llm, max_token_limit=context_length, return_messages=True
|
277 |
)
|
278 |
+
template = cls._make_template(
|
279 |
+
system_msg=system_msg, poll_question_name=poll_question_name
|
280 |
)
|
281 |
+
chain = ConversationChain(
|
|
|
|
|
|
|
|
|
282 |
memory=memory,
|
283 |
+
prompt=template,
|
284 |
+
llm=llm,
|
285 |
+
metadata=metadata,
|
286 |
+
)
|
287 |
+
return cls(
|
288 |
+
context_length=context_length,
|
289 |
+
tokenizer=tokenizer,
|
290 |
chain=chain,
|
|
|
291 |
)
|
|
|
|
|
|
|
292 |
|
293 |
|
294 |
async def respond(
|
295 |
+
chat_input: str,
|
296 |
+
chatbot_mode: str,
|
297 |
+
case_input: str,
|
298 |
+
state: ChatSession,
|
299 |
request: gr.Request,
|
300 |
+
) -> Tuple[List[str], ChatSession, str]:
|
301 |
"""Execute the chat functionality."""
|
302 |
|
303 |
def prep_messages(
|
304 |
user_msg: str, memory_buffer: List[BaseMessage]
|
305 |
) -> Tuple[str, List[BaseMessage]]:
|
306 |
+
messages_to_send = state.chain.prompt.format_messages(
|
307 |
input=user_msg, history=memory_buffer
|
308 |
)
|
309 |
+
user_msg_token_count = state.chain.llm.get_num_tokens_from_messages(
|
310 |
+
[messages_to_send[-1]]
|
311 |
+
)
|
312 |
+
total_token_count = state.chain.llm.get_num_tokens_from_messages(
|
313 |
+
messages_to_send
|
314 |
+
)
|
315 |
+
while user_msg_token_count > state.context_length:
|
316 |
LOG.warning(
|
317 |
f"Pruning user message due to user message token length of {user_msg_token_count}"
|
318 |
)
|
319 |
+
user_msg = state.tokenizer.decode(
|
320 |
+
state.chain.llm.get_token_ids(user_msg)[: state.context_length - 100]
|
321 |
)
|
322 |
+
messages_to_send = state.chain.prompt.format_messages(
|
323 |
input=user_msg, history=memory_buffer
|
324 |
)
|
325 |
+
user_msg_token_count = state.chain.llm.get_num_tokens_from_messages(
|
326 |
[messages_to_send[-1]]
|
327 |
)
|
328 |
+
total_token_count = state.chain.llm.get_num_tokens_from_messages(
|
329 |
+
messages_to_send
|
330 |
+
)
|
331 |
+
while total_token_count > state.context_length:
|
332 |
LOG.warning(
|
333 |
f"Pruning memory due to total token length of {total_token_count}"
|
334 |
)
|
|
|
336 |
memory_buffer.pop(0)
|
337 |
continue
|
338 |
memory_buffer = memory_buffer[1:]
|
339 |
+
messages_to_send = state.chain.prompt.format_messages(
|
340 |
input=user_msg, history=memory_buffer
|
341 |
)
|
342 |
+
total_token_count = state.chain.llm.get_num_tokens_from_messages(
|
343 |
+
messages_to_send
|
344 |
+
)
|
345 |
return user_msg, memory_buffer
|
346 |
|
347 |
try:
|
348 |
if state is None:
|
349 |
+
if chatbot_mode == ChatbotMode.DEBATE_PARTNER:
|
350 |
+
new_session = ChatSession.new(
|
351 |
+
use_claude=False,
|
352 |
+
system_msg=ChatSystemMessage.CASE_SYSTEM_MESSAGE,
|
353 |
+
metadata=ChatSession.set_metadata(
|
354 |
+
username=request.username,
|
355 |
+
chatbot_mode=chatbot_mode,
|
356 |
+
turns_completed=0,
|
357 |
+
case=case_input,
|
358 |
+
),
|
359 |
+
poll_question_name=case_input,
|
360 |
+
)
|
361 |
+
else:
|
362 |
+
new_session = ChatSession.new(
|
363 |
+
use_claude=True,
|
364 |
+
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE,
|
365 |
+
metadata=ChatSession.set_metadata(
|
366 |
+
username=request.username,
|
367 |
+
chatbot_mode=chatbot_mode,
|
368 |
+
turns_completed=0,
|
369 |
+
),
|
370 |
+
poll_question_name=None,
|
371 |
+
)
|
372 |
+
state = new_session
|
373 |
+
state.chain.metadata = ChatSession.set_metadata(
|
374 |
+
username=request.username,
|
375 |
+
chatbot_mode=chatbot_mode,
|
376 |
+
turns_completed=len(state.history) + 1,
|
377 |
+
case=case_input,
|
378 |
+
)
|
379 |
LOG.info(f"""[{request.username}] STARTING CHAIN""")
|
380 |
+
LOG.debug(f"History: {state.history}")
|
381 |
+
LOG.debug(f"User input: {chat_input}")
|
382 |
+
chat_input, state.chain.memory.chat_memory.messages = prep_messages(
|
383 |
+
chat_input, state.chain.memory.buffer
|
384 |
+
)
|
385 |
+
messages_to_send = state.chain.prompt.format_messages(
|
386 |
+
input=chat_input, history=state.chain.memory.buffer
|
387 |
)
|
388 |
+
total_token_count = state.chain.llm.get_num_tokens_from_messages(
|
389 |
+
messages_to_send
|
390 |
)
|
|
|
391 |
LOG.debug(f"Messages to send: {messages_to_send}")
|
392 |
+
LOG.debug(f"Tokens to send: {total_token_count}")
|
393 |
callback = AsyncIteratorCallbackHandler()
|
394 |
run_collector = RunCollectorCallbackHandler()
|
395 |
run = asyncio.create_task(
|
396 |
+
state.chain.apredict(
|
397 |
+
input=chat_input,
|
398 |
callbacks=[callback, run_collector],
|
399 |
)
|
400 |
)
|
401 |
+
state.history.append((chat_input, ""))
|
402 |
run_id = None
|
403 |
+
langsmith_url = None
|
404 |
async for tok in callback.aiter():
|
405 |
+
user, bot = state.history[-1]
|
406 |
bot += tok
|
407 |
+
state.history[-1] = (user, bot)
|
408 |
+
yield state.history, state, None
|
409 |
await run
|
410 |
if run_collector.traced_runs and run_id is None:
|
411 |
run_id = run_collector.traced_runs[0].id
|
|
|
413 |
if run_id:
|
414 |
run_collector.traced_runs = []
|
415 |
try:
|
416 |
+
langsmith_url = Client().share_run(run_id)
|
417 |
+
LOG.info(f"""Run ID: {run_id} \n URL : {langsmith_url}""")
|
418 |
+
url_markdown = (
|
419 |
+
f"""[Click to view shareable chat]({langsmith_url})"""
|
420 |
+
)
|
421 |
except Exception as exc:
|
422 |
LOG.error(exc)
|
423 |
url_markdown = "Share link not currently available"
|
424 |
+
if (
|
425 |
+
len(state.history) > 9
|
426 |
+
and chatbot_mode == ChatbotMode.DEBATE_PARTNER
|
427 |
+
):
|
428 |
+
url_markdown += """\n
|
429 |
+
🙌 You have completed 10 exchanges with the chatbot."""
|
430 |
+
yield state.history, state, url_markdown
|
431 |
LOG.info(f"""[{request.username}] ENDING CHAIN""")
|
432 |
+
LOG.debug(f"History: {state.history}")
|
433 |
+
LOG.debug(f"Memory: {state.chain.memory.json()}")
|
434 |
data_to_flag = (
|
435 |
{
|
436 |
+
"history": deepcopy(state.history),
|
437 |
"username": request.username,
|
438 |
"timestamp": datetime.datetime.now(datetime.timezone.utc).isoformat(),
|
439 |
+
"session_id": state.session_id,
|
440 |
+
"metadata": state.chain.metadata,
|
441 |
+
"langsmith_url": langsmith_url,
|
442 |
},
|
443 |
)
|
444 |
LOG.debug(f"Data to flag: {data_to_flag}")
|
445 |
gradio_flagger.flag(flag_data=data_to_flag, username=request.username)
|
446 |
except Exception as e:
|
447 |
+
LOG.error(e)
|
448 |
raise e
|
449 |
|
450 |
|
451 |
+
class ChatbotConfig(BaseModel):
|
452 |
+
app_title: str = "CBS Technology Strategy - Fall 2023"
|
453 |
+
chatbot_modes: List[ChatbotMode] = [mode for mode in ChatbotMode]
|
454 |
+
case_options: List[str] = poll_questions.get_case_names()
|
455 |
+
default_case_option: str = "Netflix"
|
456 |
|
|
|
457 |
|
458 |
+
def change_chatbot_mode(
|
459 |
+
state: ChatSession, chatbot_mode: str, poll_question_name: str, request: gr.Request
|
460 |
+
) -> Tuple[Any, ChatSession]:
|
461 |
+
"""Returns a function that sets the visibility of the case input field and the state"""
|
462 |
+
if state is None:
|
463 |
+
if chatbot_mode == ChatbotMode.DEBATE_PARTNER:
|
464 |
+
new_session = ChatSession.new(
|
465 |
+
use_claude=False,
|
466 |
+
system_msg=ChatSystemMessage.CASE_SYSTEM_MESSAGE,
|
467 |
+
metadata=dict(username=request.username),
|
468 |
+
poll_question_name=case_input,
|
469 |
+
)
|
470 |
+
else:
|
471 |
+
new_session = ChatSession.new(
|
472 |
+
use_claude=True,
|
473 |
+
system_msg=ChatSystemMessage.RESEARCH_SYSTEM_MESSAGE,
|
474 |
+
metadata=dict(username=request.username),
|
475 |
+
poll_question_name=None,
|
476 |
+
)
|
477 |
+
state = new_session
|
478 |
+
if chatbot_mode == ChatbotMode.DEBATE_PARTNER:
|
479 |
+
state.set_chatbot_mode(case_mode=True, poll_question_name=poll_question_name)
|
480 |
+
state.clear_memory()
|
481 |
+
return gr.update(visible=True), state
|
482 |
+
elif chatbot_mode == ChatbotMode.RESEARCH_ASSISTANT:
|
483 |
+
state.set_chatbot_mode(case_mode=False)
|
484 |
+
state.clear_memory()
|
485 |
+
return gr.update(visible=False), state
|
486 |
+
else:
|
487 |
+
raise ValueError("chatbot_mode is not correctly set")
|
488 |
|
489 |
+
|
490 |
+
config = ChatbotConfig()
|
|
|
491 |
with gr.Blocks(
|
492 |
theme=theme,
|
493 |
analytics_enabled=False,
|
494 |
+
title=config.app_title,
|
495 |
) as demo:
|
496 |
state = gr.State()
|
497 |
+
gr.Markdown(f"""### {config.app_title}""")
|
498 |
with gr.Tab("Chatbot"):
|
499 |
+
with gr.Row():
|
500 |
+
chatbot_mode = gr.Radio(
|
501 |
+
label="Mode",
|
502 |
+
choices=config.chatbot_modes,
|
503 |
+
value=ChatbotMode.DEFAULT,
|
504 |
+
)
|
505 |
+
case_input = gr.Dropdown(
|
506 |
+
label="Case",
|
507 |
+
choices=config.case_options,
|
508 |
+
value=config.default_case_option,
|
509 |
+
multiselect=False,
|
510 |
+
)
|
511 |
chatbot = gr.Chatbot(label="ChatBot")
|
512 |
with gr.Row():
|
513 |
input_message = gr.Textbox(
|
514 |
placeholder="Send a message.",
|
515 |
+
label="Type a message to begin",
|
516 |
scale=5,
|
517 |
)
|
518 |
+
chat_submit_button = gr.Button(value="Submit")
|
519 |
+
status_message = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
520 |
gradio_flagger.setup([chatbot], "chats")
|
521 |
|
522 |
+
chatbot_submit_params = dict(
|
523 |
+
fn=respond,
|
524 |
+
inputs=[input_message, chatbot_mode, case_input, state],
|
525 |
+
outputs=[chatbot, state, status_message],
|
|
|
|
|
|
|
|
|
|
|
526 |
)
|
527 |
+
input_message.submit(**chatbot_submit_params)
|
528 |
+
chat_submit_button.click(**chatbot_submit_params)
|
529 |
+
chatbot_mode_params = dict(
|
530 |
+
fn=change_chatbot_mode,
|
531 |
+
inputs=[state, chatbot_mode, case_input],
|
532 |
+
outputs=[case_input, state],
|
533 |
)
|
534 |
+
chatbot_mode.change(**chatbot_mode_params)
|
535 |
+
case_input.change(**chatbot_mode_params)
|
536 |
+
clear_chatbot_messages_params = dict(
|
537 |
+
fn=reset_textbox, inputs=[], outputs=[input_message, chatbot, status_message]
|
538 |
)
|
539 |
+
chatbot_mode.change(**clear_chatbot_messages_params)
|
540 |
+
case_input.change(**clear_chatbot_messages_params)
|
541 |
+
chat_submit_button.click(**clear_chatbot_messages_params)
|
542 |
+
input_message.submit(**clear_chatbot_messages_params)
|
|
|
|
|
|
|
|
|
543 |
|
544 |
demo.queue(max_size=99, concurrency_count=99, api_open=False).launch(
|
545 |
debug=True, auth=auth
|