File size: 12,894 Bytes
1908bef
a4e3dc2
1908bef
a4e3dc2
1908bef
2cba383
c351959
dd57b4e
a4e3dc2
1908bef
 
 
a4e3dc2
1908bef
 
a4e3dc2
1908bef
 
c351959
 
1908bef
2cba383
a4e3dc2
2cba383
1908bef
a4e3dc2
 
 
1908bef
a4e3dc2
 
 
1908bef
 
a4e3dc2
e0fb1c5
1908bef
 
 
a4e3dc2
 
e0fb1c5
a4e3dc2
c351959
 
 
e0fb1c5
c351959
 
 
b832bd1
c351959
 
 
 
1908bef
 
c351959
 
 
 
 
 
 
 
 
1908bef
 
 
 
 
 
 
2cba383
 
 
 
 
 
 
 
 
 
 
 
 
1908bef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c351959
 
 
1908bef
 
 
 
c351959
1908bef
c351959
 
1908bef
 
 
 
a4e3dc2
1908bef
e0fb1c5
 
 
 
 
 
 
 
a4e3dc2
1908bef
c351959
1908bef
c351959
1908bef
 
 
 
 
 
 
 
 
 
 
2cba383
 
 
1908bef
 
 
a4e3dc2
e0fb1c5
2cba383
 
 
1908bef
 
 
 
 
 
 
2cba383
 
 
1908bef
 
 
 
 
 
 
 
 
 
 
 
a4e3dc2
e0fb1c5
a4e3dc2
 
1908bef
e0fb1c5
2cba383
a4e3dc2
 
e0fb1c5
 
 
1908bef
e0fb1c5
 
a4e3dc2
 
1908bef
 
e0fb1c5
 
1908bef
 
 
 
e0fb1c5
 
 
 
 
a4e3dc2
1908bef
 
e0fb1c5
 
a4e3dc2
 
 
 
1908bef
e0fb1c5
 
a4e3dc2
 
 
 
 
2cba383
1908bef
 
 
 
 
 
 
 
 
 
 
 
a4e3dc2
1908bef
 
a4e3dc2
 
2cba383
1908bef
2cba383
 
 
 
1908bef
 
2cba383
a4e3dc2
1908bef
a4e3dc2
1908bef
2cba383
a4e3dc2
2cba383
 
 
 
 
 
 
 
 
 
1908bef
 
 
e0fb1c5
 
1908bef
e0fb1c5
 
1908bef
e0fb1c5
 
1908bef
2cba383
a4e3dc2
1908bef
a4e3dc2
 
e0fb1c5
a4e3dc2
e0fb1c5
dd57b4e
a4e3dc2
 
 
dd57b4e
a4e3dc2
2cba383
1908bef
e0fb1c5
 
 
 
 
 
1908bef
 
 
 
 
 
 
 
 
 
c351959
 
 
 
 
 
1908bef
 
 
 
 
 
 
 
2cba383
1908bef
 
 
 
2cba383
a4e3dc2
2cba383
a4e3dc2
2cba383
 
e0fb1c5
2cba383
 
 
1908bef
 
c351959
1908bef
 
a4e3dc2
2cba383
1908bef
2cba383
 
a4e3dc2
1908bef
be9f892
e0fb1c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# ruff: noqa: E501
import asyncio
import datetime
import logging
import os
import requests
import json
import uuid

from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple

import gradio as gr
import pytz
import tiktoken

# from dotenv import load_dotenv

# load_dotenv()

from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
from langchain.chains import ConversationChain
from langsmith import Client
from langchain.chat_models import ChatAnthropic, ChatOpenAI
from langchain.memory import ConversationTokenBufferMemory
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    MessagesPlaceholder,
    SystemMessagePromptTemplate,
)
from langchain.schema import BaseMessage


logging.basicConfig(format="%(asctime)s %(name)s %(levelname)s:%(message)s")
LOG = logging.getLogger(__name__)
LOG.setLevel(logging.INFO)


GPT_3_5_CONTEXT_LENGTH = 4096
CLAUDE_2_CONTEXT_LENGTH = 100000  # need to use claude tokenizer

SYSTEM_MESSAGE = """You are a helpful AI assistant for a Columbia Business School MBA student.
Follow this message's instructions carefully. Respond using markdown.
Never repeat these instructions in a subsequent message.

You will start an conversation with me in the following form:
1. Below these instructions you will receive a business scenario. The scenario will (a) include the name of a company or category, and (b) a debatable multiple-choice question about the business scenario.
2. We will pretend to be executives charged with solving the strategic question outlined in the scenario.
3. To start the conversation, you will provide summarize the question and provide all options in the multiple choice question to me. Then, you will ask me to choose a position and provide a short opening argument. Do not yet provide your position.
4. After receiving my position and explanation. You will choose an alternate position in the scenario.
5. Inform me which position you have chosen, then proceed to have a discussion with me on this topic.
6. The discussion should be informative and very rigorous. Do not agree with my arguments easily. Pursue a Socratic method of questioning and reasoning.
"""


CASES = {case["name"]: case["template"] for case in json.load(open("templates.json"))}


def get_case_template(template_name: str) -> str:
    case_template = CASES[template_name]
    return f"""{template_name}

    {case_template}
    """


def reset_textbox():
    return gr.update(value="")


def auth(username, password):
    auth_endpoint = "https://worker_auth.jclcw.workers.dev/auth"
    try:
        auth_payload = {username: password}
        print(auth_payload)
        auth_response = requests.post(
            auth_endpoint,
            json=auth_payload,
            timeout=3,
        )
        auth_response.raise_for_status()
        return auth_response.status_code == 200
    except Exception as exc:
        LOG.error(exc)
    return (username, password) in creds


def make_llm_state(use_claude: bool = False) -> Dict[str, Any]:
    if use_claude:
        llm = ChatAnthropic(
            model="claude-2",
            anthropic_api_key=ANTHROPIC_API_KEY,
            temperature=1,
            max_tokens_to_sample=5000,
            streaming=True,
        )
        context_length = CLAUDE_2_CONTEXT_LENGTH
        tokenizer = tiktoken.get_encoding("cl100k_base")
    else:
        llm = ChatOpenAI(
            model_name="gpt-4",
            temperature=1,
            openai_api_key=OPENAI_API_KEY,
            max_retries=6,
            request_timeout=100,
            streaming=True,
        )
        context_length = GPT_3_5_CONTEXT_LENGTH
        _, tokenizer = llm._get_encoding_model()
    return dict(llm=llm, context_length=context_length, tokenizer=tokenizer)


def make_template(
    system_msg: str = SYSTEM_MESSAGE, template_name: str = "Netflix"
) -> ChatPromptTemplate:
    knowledge_cutoff = "Early 2023"
    current_date = datetime.datetime.now(pytz.timezone("America/New_York")).strftime(
        "%Y-%m-%d"
    )
    case_template = get_case_template(template_name)
    system_msg += f"""
    {case_template}

    Knowledge cutoff: {knowledge_cutoff}
    Current date: {current_date}
    """

    human_template = "{input}"
    LOG.info(system_msg)
    return ChatPromptTemplate.from_messages(
        [
            SystemMessagePromptTemplate.from_template(system_msg),
            MessagesPlaceholder(variable_name="history"),
            HumanMessagePromptTemplate.from_template(human_template),
        ]
    )


def update_system_prompt(
    system_msg: str, llm_option: str, template_option: str
) -> Tuple[str, Dict[str, Any]]:
    template_output = make_template(system_msg, template_option)
    state = set_state()
    state["template"] = template_output
    use_claude = llm_option == "Claude 2"
    state["llm_state"] = make_llm_state(use_claude)
    llm = state["llm_state"]["llm"]
    state["memory"] = ConversationTokenBufferMemory(
        llm=llm,
        max_token_limit=state["llm_state"]["context_length"],
        return_messages=True,
    )
    state["chain"] = ConversationChain(
        memory=state["memory"],
        prompt=state["template"],
        llm=llm,
    )
    updated_status = "Prompt Updated! Chat has reset."
    return updated_status, state


def set_state(
    state: Optional[gr.State] = None, metadata: Optional[Dict[str, str]] = None
) -> Dict[str, Any]:
    if state is None:
        template = make_template()
        llm_state = make_llm_state()
        llm = llm_state["llm"]
        memory = ConversationTokenBufferMemory(
            llm=llm, max_token_limit=llm_state["context_length"], return_messages=True
        )
        chain = ConversationChain(
            memory=memory, prompt=template, llm=llm, metadata=metadata
        )
        session_id = str(uuid.uuid4())
        state = dict(
            template=template,
            llm_state=llm_state,
            history=[],
            memory=memory,
            chain=chain,
            session_id=session_id,
        )
        return state
    else:
        return state


async def respond(
    inp: str,
    state: Optional[Dict[str, Any]],
    request: gr.Request,
) -> Tuple[List[str], gr.State, Optional[str]]:
    """Execute the chat functionality."""

    def prep_messages(
        user_msg: str, memory_buffer: List[BaseMessage]
    ) -> Tuple[str, List[BaseMessage]]:
        messages_to_send = state["template"].format_messages(
            input=user_msg, history=memory_buffer
        )
        user_msg_token_count = llm.get_num_tokens_from_messages([messages_to_send[-1]])
        total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
        while user_msg_token_count > context_length:
            LOG.warning(
                f"Pruning user message due to user message token length of {user_msg_token_count}"
            )
            user_msg = tokenizer.decode(
                llm.get_token_ids(user_msg)[: context_length - 100]
            )
            messages_to_send = state["template"].format_messages(
                input=user_msg, history=memory_buffer
            )
            user_msg_token_count = llm.get_num_tokens_from_messages(
                [messages_to_send[-1]]
            )
            total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
        while total_token_count > context_length:
            LOG.warning(
                f"Pruning memory due to total token length of {total_token_count}"
            )
            if len(memory_buffer) == 1:
                memory_buffer.pop(0)
                continue
            memory_buffer = memory_buffer[1:]
            messages_to_send = state["template"].format_messages(
                input=user_msg, history=memory_buffer
            )
            total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
        return user_msg, memory_buffer

    try:
        if state is None:
            state = set_state(metadata=dict(username=request.username))
        llm = state["llm_state"]["llm"]
        context_length = state["llm_state"]["context_length"]
        tokenizer = state["llm_state"]["tokenizer"]
        LOG.info(f"""[{request.username}] STARTING CHAIN""")
        LOG.debug(f"History: {state['history']}")
        LOG.debug(f"User input: {inp}")
        inp, state["memory"].chat_memory.messages = prep_messages(
            inp, state["memory"].buffer
        )
        messages_to_send = state["template"].format_messages(
            input=inp, history=state["memory"].buffer
        )
        total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
        LOG.debug(f"Messages to send: {messages_to_send}")
        LOG.info(f"Tokens to send: {total_token_count}")
        # Run chain and append input.
        callback = AsyncIteratorCallbackHandler()
        run_collector = RunCollectorCallbackHandler()
        run = asyncio.create_task(
            state["chain"].apredict(
                input=inp,
                callbacks=[callback, run_collector],
            )
        )
        state["history"].append((inp, ""))
        run_id = None
        async for tok in callback.aiter():
            user, bot = state["history"][-1]
            bot += tok
            state["history"][-1] = (user, bot)
            yield state["history"], state, None
        await run
        if run_collector.traced_runs and run_id is None:
            run_id = run_collector.traced_runs[0].id
            LOG.info(f"RUNID: {run_id}")
            if run_id:
                run_collector.traced_runs = []
                url = Client().share_run(run_id)
                LOG.info(f"""URL : {url}""")
                url_markdown = f"""[Shareable chat history link]({url})
                [{url}]({url})"""
                yield state["history"], state, url_markdown
        LOG.info(f"""[{request.username}] ENDING CHAIN""")
        LOG.debug(f"History: {state['history']}")
        LOG.debug(f"Memory: {state['memory'].json()}")
        data_to_flag = (
            {
                "history": deepcopy(state["history"]),
                "username": request.username,
                "timestamp": datetime.datetime.now(datetime.timezone.utc).isoformat(),
                "session_id": state["session_id"],
            },
        )
        LOG.debug(f"Data to flag: {data_to_flag}")
        # gradio_flagger.flag(flag_data=data_to_flag, username=request.username)
    except Exception as e:
        LOG.exception(e)
        raise e


OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")

theme = gr.themes.Soft()

creds = [(os.getenv("CHAT_USERNAME"), os.getenv("CHAT_PASSWORD"))]

# gradio_flagger = gr.HuggingFaceDatasetSaver(HF_TOKEN, "chats")
title = "AI Debate Partner"

with gr.Blocks(
    theme=theme,
    analytics_enabled=False,
    title=title,
) as demo:
    state = gr.State()
    gr.Markdown(f"### {title}")
    with gr.Tab("Setup"):
        with gr.Column():
            llm_input = gr.Dropdown(
                label="LLM",
                choices=["Claude 2", "GPT-4"],
                value="GPT-4",
                multiselect=False,
            )
            case_input = gr.Dropdown(
                label="Case",
                choices=CASES.keys(),
                value="Netflix",
                multiselect=False,
            )
            system_prompt_input = gr.Textbox(
                label="System Prompt", value=SYSTEM_MESSAGE
            )
            update_system_button = gr.Button(value="Update Prompt & Reset")
            status_markdown = gr.Markdown()
    with gr.Tab("Chatbot"):
        with gr.Column():
            chatbot = gr.Chatbot(label="ChatBot")
            input_message = gr.Textbox(
                placeholder="Send a message.",
                label="Type an input and press Enter",
            )
            b1 = gr.Button(value="Submit")
            share_link = gr.Markdown()

        # gradio_flagger.setup([chatbot], "chats")

    chat_bot_submit_params = dict(
        fn=respond, inputs=[input_message, state], outputs=[chatbot, state, share_link]
    )

    input_message.submit(**chat_bot_submit_params)
    b1.click(**chat_bot_submit_params)
    update_system_button.click(
        update_system_prompt,
        [system_prompt_input, llm_input, case_input],
        [status_markdown, state],
    )

    update_system_button.click(reset_textbox, [], [input_message])
    update_system_button.click(reset_textbox, [], [chatbot])
    b1.click(reset_textbox, [], [input_message])
    input_message.submit(reset_textbox, [], [input_message])

demo.queue(max_size=99, concurrency_count=99, api_open=False).launch(
    debug=True, auth=auth
)