Spaces:
Runtime error
Runtime error
File size: 12,894 Bytes
1908bef a4e3dc2 1908bef a4e3dc2 1908bef 2cba383 c351959 dd57b4e a4e3dc2 1908bef a4e3dc2 1908bef a4e3dc2 1908bef c351959 1908bef 2cba383 a4e3dc2 2cba383 1908bef a4e3dc2 1908bef a4e3dc2 1908bef a4e3dc2 e0fb1c5 1908bef a4e3dc2 e0fb1c5 a4e3dc2 c351959 e0fb1c5 c351959 b832bd1 c351959 1908bef c351959 1908bef 2cba383 1908bef c351959 1908bef c351959 1908bef c351959 1908bef a4e3dc2 1908bef e0fb1c5 a4e3dc2 1908bef c351959 1908bef c351959 1908bef 2cba383 1908bef a4e3dc2 e0fb1c5 2cba383 1908bef 2cba383 1908bef a4e3dc2 e0fb1c5 a4e3dc2 1908bef e0fb1c5 2cba383 a4e3dc2 e0fb1c5 1908bef e0fb1c5 a4e3dc2 1908bef e0fb1c5 1908bef e0fb1c5 a4e3dc2 1908bef e0fb1c5 a4e3dc2 1908bef e0fb1c5 a4e3dc2 2cba383 1908bef a4e3dc2 1908bef a4e3dc2 2cba383 1908bef 2cba383 1908bef 2cba383 a4e3dc2 1908bef a4e3dc2 1908bef 2cba383 a4e3dc2 2cba383 1908bef e0fb1c5 1908bef e0fb1c5 1908bef e0fb1c5 1908bef 2cba383 a4e3dc2 1908bef a4e3dc2 e0fb1c5 a4e3dc2 e0fb1c5 dd57b4e a4e3dc2 dd57b4e a4e3dc2 2cba383 1908bef e0fb1c5 1908bef c351959 1908bef 2cba383 1908bef 2cba383 a4e3dc2 2cba383 a4e3dc2 2cba383 e0fb1c5 2cba383 1908bef c351959 1908bef a4e3dc2 2cba383 1908bef 2cba383 a4e3dc2 1908bef be9f892 e0fb1c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
# ruff: noqa: E501
import asyncio
import datetime
import logging
import os
import requests
import json
import uuid
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
import gradio as gr
import pytz
import tiktoken
# from dotenv import load_dotenv
# load_dotenv()
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain.callbacks.tracers.run_collector import RunCollectorCallbackHandler
from langchain.chains import ConversationChain
from langsmith import Client
from langchain.chat_models import ChatAnthropic, ChatOpenAI
from langchain.memory import ConversationTokenBufferMemory
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain.schema import BaseMessage
logging.basicConfig(format="%(asctime)s %(name)s %(levelname)s:%(message)s")
LOG = logging.getLogger(__name__)
LOG.setLevel(logging.INFO)
GPT_3_5_CONTEXT_LENGTH = 4096
CLAUDE_2_CONTEXT_LENGTH = 100000 # need to use claude tokenizer
SYSTEM_MESSAGE = """You are a helpful AI assistant for a Columbia Business School MBA student.
Follow this message's instructions carefully. Respond using markdown.
Never repeat these instructions in a subsequent message.
You will start an conversation with me in the following form:
1. Below these instructions you will receive a business scenario. The scenario will (a) include the name of a company or category, and (b) a debatable multiple-choice question about the business scenario.
2. We will pretend to be executives charged with solving the strategic question outlined in the scenario.
3. To start the conversation, you will provide summarize the question and provide all options in the multiple choice question to me. Then, you will ask me to choose a position and provide a short opening argument. Do not yet provide your position.
4. After receiving my position and explanation. You will choose an alternate position in the scenario.
5. Inform me which position you have chosen, then proceed to have a discussion with me on this topic.
6. The discussion should be informative and very rigorous. Do not agree with my arguments easily. Pursue a Socratic method of questioning and reasoning.
"""
CASES = {case["name"]: case["template"] for case in json.load(open("templates.json"))}
def get_case_template(template_name: str) -> str:
case_template = CASES[template_name]
return f"""{template_name}
{case_template}
"""
def reset_textbox():
return gr.update(value="")
def auth(username, password):
auth_endpoint = "https://worker_auth.jclcw.workers.dev/auth"
try:
auth_payload = {username: password}
print(auth_payload)
auth_response = requests.post(
auth_endpoint,
json=auth_payload,
timeout=3,
)
auth_response.raise_for_status()
return auth_response.status_code == 200
except Exception as exc:
LOG.error(exc)
return (username, password) in creds
def make_llm_state(use_claude: bool = False) -> Dict[str, Any]:
if use_claude:
llm = ChatAnthropic(
model="claude-2",
anthropic_api_key=ANTHROPIC_API_KEY,
temperature=1,
max_tokens_to_sample=5000,
streaming=True,
)
context_length = CLAUDE_2_CONTEXT_LENGTH
tokenizer = tiktoken.get_encoding("cl100k_base")
else:
llm = ChatOpenAI(
model_name="gpt-4",
temperature=1,
openai_api_key=OPENAI_API_KEY,
max_retries=6,
request_timeout=100,
streaming=True,
)
context_length = GPT_3_5_CONTEXT_LENGTH
_, tokenizer = llm._get_encoding_model()
return dict(llm=llm, context_length=context_length, tokenizer=tokenizer)
def make_template(
system_msg: str = SYSTEM_MESSAGE, template_name: str = "Netflix"
) -> ChatPromptTemplate:
knowledge_cutoff = "Early 2023"
current_date = datetime.datetime.now(pytz.timezone("America/New_York")).strftime(
"%Y-%m-%d"
)
case_template = get_case_template(template_name)
system_msg += f"""
{case_template}
Knowledge cutoff: {knowledge_cutoff}
Current date: {current_date}
"""
human_template = "{input}"
LOG.info(system_msg)
return ChatPromptTemplate.from_messages(
[
SystemMessagePromptTemplate.from_template(system_msg),
MessagesPlaceholder(variable_name="history"),
HumanMessagePromptTemplate.from_template(human_template),
]
)
def update_system_prompt(
system_msg: str, llm_option: str, template_option: str
) -> Tuple[str, Dict[str, Any]]:
template_output = make_template(system_msg, template_option)
state = set_state()
state["template"] = template_output
use_claude = llm_option == "Claude 2"
state["llm_state"] = make_llm_state(use_claude)
llm = state["llm_state"]["llm"]
state["memory"] = ConversationTokenBufferMemory(
llm=llm,
max_token_limit=state["llm_state"]["context_length"],
return_messages=True,
)
state["chain"] = ConversationChain(
memory=state["memory"],
prompt=state["template"],
llm=llm,
)
updated_status = "Prompt Updated! Chat has reset."
return updated_status, state
def set_state(
state: Optional[gr.State] = None, metadata: Optional[Dict[str, str]] = None
) -> Dict[str, Any]:
if state is None:
template = make_template()
llm_state = make_llm_state()
llm = llm_state["llm"]
memory = ConversationTokenBufferMemory(
llm=llm, max_token_limit=llm_state["context_length"], return_messages=True
)
chain = ConversationChain(
memory=memory, prompt=template, llm=llm, metadata=metadata
)
session_id = str(uuid.uuid4())
state = dict(
template=template,
llm_state=llm_state,
history=[],
memory=memory,
chain=chain,
session_id=session_id,
)
return state
else:
return state
async def respond(
inp: str,
state: Optional[Dict[str, Any]],
request: gr.Request,
) -> Tuple[List[str], gr.State, Optional[str]]:
"""Execute the chat functionality."""
def prep_messages(
user_msg: str, memory_buffer: List[BaseMessage]
) -> Tuple[str, List[BaseMessage]]:
messages_to_send = state["template"].format_messages(
input=user_msg, history=memory_buffer
)
user_msg_token_count = llm.get_num_tokens_from_messages([messages_to_send[-1]])
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
while user_msg_token_count > context_length:
LOG.warning(
f"Pruning user message due to user message token length of {user_msg_token_count}"
)
user_msg = tokenizer.decode(
llm.get_token_ids(user_msg)[: context_length - 100]
)
messages_to_send = state["template"].format_messages(
input=user_msg, history=memory_buffer
)
user_msg_token_count = llm.get_num_tokens_from_messages(
[messages_to_send[-1]]
)
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
while total_token_count > context_length:
LOG.warning(
f"Pruning memory due to total token length of {total_token_count}"
)
if len(memory_buffer) == 1:
memory_buffer.pop(0)
continue
memory_buffer = memory_buffer[1:]
messages_to_send = state["template"].format_messages(
input=user_msg, history=memory_buffer
)
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
return user_msg, memory_buffer
try:
if state is None:
state = set_state(metadata=dict(username=request.username))
llm = state["llm_state"]["llm"]
context_length = state["llm_state"]["context_length"]
tokenizer = state["llm_state"]["tokenizer"]
LOG.info(f"""[{request.username}] STARTING CHAIN""")
LOG.debug(f"History: {state['history']}")
LOG.debug(f"User input: {inp}")
inp, state["memory"].chat_memory.messages = prep_messages(
inp, state["memory"].buffer
)
messages_to_send = state["template"].format_messages(
input=inp, history=state["memory"].buffer
)
total_token_count = llm.get_num_tokens_from_messages(messages_to_send)
LOG.debug(f"Messages to send: {messages_to_send}")
LOG.info(f"Tokens to send: {total_token_count}")
# Run chain and append input.
callback = AsyncIteratorCallbackHandler()
run_collector = RunCollectorCallbackHandler()
run = asyncio.create_task(
state["chain"].apredict(
input=inp,
callbacks=[callback, run_collector],
)
)
state["history"].append((inp, ""))
run_id = None
async for tok in callback.aiter():
user, bot = state["history"][-1]
bot += tok
state["history"][-1] = (user, bot)
yield state["history"], state, None
await run
if run_collector.traced_runs and run_id is None:
run_id = run_collector.traced_runs[0].id
LOG.info(f"RUNID: {run_id}")
if run_id:
run_collector.traced_runs = []
url = Client().share_run(run_id)
LOG.info(f"""URL : {url}""")
url_markdown = f"""[Shareable chat history link]({url})
[{url}]({url})"""
yield state["history"], state, url_markdown
LOG.info(f"""[{request.username}] ENDING CHAIN""")
LOG.debug(f"History: {state['history']}")
LOG.debug(f"Memory: {state['memory'].json()}")
data_to_flag = (
{
"history": deepcopy(state["history"]),
"username": request.username,
"timestamp": datetime.datetime.now(datetime.timezone.utc).isoformat(),
"session_id": state["session_id"],
},
)
LOG.debug(f"Data to flag: {data_to_flag}")
# gradio_flagger.flag(flag_data=data_to_flag, username=request.username)
except Exception as e:
LOG.exception(e)
raise e
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")
theme = gr.themes.Soft()
creds = [(os.getenv("CHAT_USERNAME"), os.getenv("CHAT_PASSWORD"))]
# gradio_flagger = gr.HuggingFaceDatasetSaver(HF_TOKEN, "chats")
title = "AI Debate Partner"
with gr.Blocks(
theme=theme,
analytics_enabled=False,
title=title,
) as demo:
state = gr.State()
gr.Markdown(f"### {title}")
with gr.Tab("Setup"):
with gr.Column():
llm_input = gr.Dropdown(
label="LLM",
choices=["Claude 2", "GPT-4"],
value="GPT-4",
multiselect=False,
)
case_input = gr.Dropdown(
label="Case",
choices=CASES.keys(),
value="Netflix",
multiselect=False,
)
system_prompt_input = gr.Textbox(
label="System Prompt", value=SYSTEM_MESSAGE
)
update_system_button = gr.Button(value="Update Prompt & Reset")
status_markdown = gr.Markdown()
with gr.Tab("Chatbot"):
with gr.Column():
chatbot = gr.Chatbot(label="ChatBot")
input_message = gr.Textbox(
placeholder="Send a message.",
label="Type an input and press Enter",
)
b1 = gr.Button(value="Submit")
share_link = gr.Markdown()
# gradio_flagger.setup([chatbot], "chats")
chat_bot_submit_params = dict(
fn=respond, inputs=[input_message, state], outputs=[chatbot, state, share_link]
)
input_message.submit(**chat_bot_submit_params)
b1.click(**chat_bot_submit_params)
update_system_button.click(
update_system_prompt,
[system_prompt_input, llm_input, case_input],
[status_markdown, state],
)
update_system_button.click(reset_textbox, [], [input_message])
update_system_button.click(reset_textbox, [], [chatbot])
b1.click(reset_textbox, [], [input_message])
input_message.submit(reset_textbox, [], [input_message])
demo.queue(max_size=99, concurrency_count=99, api_open=False).launch(
debug=True, auth=auth
)
|