Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,56 @@
|
|
1 |
-
#
|
2 |
-
import streamlit as st
|
3 |
-
from transformers import pipeline
|
4 |
-
from PIL import Image #
|
5 |
|
6 |
-
#
|
7 |
-
# img2text
|
8 |
def img2text(image):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
|
|
|
|
22 |
def text2audio(story_text):
|
|
|
23 |
text_to_audio_model = pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
|
|
24 |
audio_data = text_to_audio_model(story_text)
|
25 |
-
return audio_data
|
26 |
|
27 |
-
#
|
28 |
-
st.set_page_config(page_title="Your Image to Audio Story",
|
29 |
-
|
30 |
-
st.
|
31 |
-
uploaded_file = st.file_uploader("Select an Image...", type=["jpg", "jpeg", "png"])
|
32 |
|
33 |
if uploaded_file is not None:
|
34 |
# Open and read the uploaded image
|
35 |
-
image = Image.open(uploaded_file) # Use PIL to open the image
|
36 |
-
st.image(image, caption="Uploaded Image", use_container_width=True)
|
37 |
|
38 |
# Stage 1: Image to Text
|
39 |
-
st.text('Processing
|
40 |
-
scenario = img2text(image) #
|
41 |
-
st.write(scenario)
|
42 |
|
43 |
# Stage 2: Text to Story
|
44 |
-
st.text('Generating a story...')
|
45 |
-
story = text2story(scenario)
|
46 |
-
st.write(story)
|
47 |
|
48 |
# Stage 3: Story to Audio data
|
49 |
-
st.text('Generating audio data...')
|
50 |
-
audio_data = text2audio(story)
|
51 |
-
|
52 |
-
# Play button
|
53 |
-
if st.button("Play Audio"):
|
54 |
-
st.audio(audio_data['audio'],
|
55 |
-
format="audio/wav",
|
56 |
-
start_time=0,
|
57 |
-
sample_rate=audio_data['sampling_rate'])
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import streamlit as st # Streamlit for building the web application
|
3 |
+
from transformers import pipeline # Hugging Face Transformers pipeline for models
|
4 |
+
from PIL import Image # PIL for handling image files
|
5 |
|
6 |
+
# Function to convert image to text
|
|
|
7 |
def img2text(image):
|
8 |
+
# Load the image captioning model
|
9 |
+
image_to_text_model = pipeline("image-captioning", model="Salesforce/blip-image-captioning-base")
|
10 |
+
# Generate a caption for the image
|
11 |
+
text = image_to_text_model(image)[0]["caption"] # Use "caption" instead of "generated_text"
|
12 |
+
return text # Return the generated caption
|
13 |
+
|
14 |
+
# Function to generate a story based on the caption
|
15 |
+
def text2story(text):
|
16 |
+
# Load the text generation model
|
17 |
+
story_model = pipeline("text-generation", model="gpt2") # Use a model better suited for storytelling
|
18 |
+
# Generate a story based on the input text
|
19 |
+
story_text = story_model(f"Once upon a time, {text}. ", max_length=150, num_return_sequences=1)
|
20 |
+
return story_text[0]["generated_text"] # Return the generated story
|
21 |
+
|
22 |
+
# Function to convert text to audio
|
23 |
def text2audio(story_text):
|
24 |
+
# Load the text-to-speech model
|
25 |
text_to_audio_model = pipeline("text-to-speech", model="facebook/mms-tts-eng")
|
26 |
+
# Generate audio data from the story text
|
27 |
audio_data = text_to_audio_model(story_text)
|
28 |
+
return audio_data # Return the audio data
|
29 |
|
30 |
+
# Main part of the application
|
31 |
+
st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") # Set the title and icon of the app
|
32 |
+
st.header("Turn Your Image into an Audio Story") # Header for the application
|
33 |
+
uploaded_file = st.file_uploader("Select an Image...", type=["jpg", "jpeg", "png"]) # File uploader for images
|
|
|
34 |
|
35 |
if uploaded_file is not None:
|
36 |
# Open and read the uploaded image
|
37 |
+
image = Image.open(uploaded_file) # Use PIL to open the uploaded image
|
38 |
+
st.image(image, caption="Uploaded Image", use_container_width=True) # Display the uploaded image
|
39 |
|
40 |
# Stage 1: Image to Text
|
41 |
+
st.text('Processing image to text...') # Inform the user about the processing stage
|
42 |
+
scenario = img2text(image) # Get the caption for the uploaded image
|
43 |
+
st.write(scenario) # Display the generated caption
|
44 |
|
45 |
# Stage 2: Text to Story
|
46 |
+
st.text('Generating a story...') # Inform the user about the story generation stage
|
47 |
+
story = text2story(scenario) # Generate a story based on the caption
|
48 |
+
st.write(story) # Display the generated story
|
49 |
|
50 |
# Stage 3: Story to Audio data
|
51 |
+
st.text('Generating audio data...') # Inform the user about the audio generation stage
|
52 |
+
audio_data = text2audio(story) # Convert the generated story into audio
|
53 |
+
|
54 |
+
# Play button for the audio
|
55 |
+
if st.button("Play Audio"): # Create a button to play the audio
|
56 |
+
st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate=audio_data['sampling_rate']) # Play the audio
|
|
|
|
|
|