Delete sum_model.py
Browse files- sum_model.py +0 -153
sum_model.py
DELETED
@@ -1,153 +0,0 @@
|
|
1 |
-
from ipex_llm.langchain.llms import TransformersLLM
|
2 |
-
from langchain import LLMChain
|
3 |
-
from langchain.chains.summarize import load_summarize_chain
|
4 |
-
from langchain.docstore.document import Document
|
5 |
-
from langchain.prompts import PromptTemplate
|
6 |
-
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
7 |
-
from langchain.chains import MapReduceDocumentsChain, ReduceDocumentsChain
|
8 |
-
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
9 |
-
|
10 |
-
|
11 |
-
class Sum():
|
12 |
-
def __init__(self, args):
|
13 |
-
self.llm_version = args.llm_version
|
14 |
-
# self.max_tokens = args.qa_max_new_tokens
|
15 |
-
|
16 |
-
def summarize_refine(self, script):
|
17 |
-
text_splitter = CharacterTextSplitter(chunk_size=1024, separator="\n", chunk_overlap=0)
|
18 |
-
texts = text_splitter.split_text(script)
|
19 |
-
docs = [Document(page_content=t) for t in texts]
|
20 |
-
llm = TransformersLLM.from_model_id_low_bit(f"checkpoint\\{self.llm_version}")
|
21 |
-
|
22 |
-
prompt_template = """Write a concise summary of the following:
|
23 |
-
{text}
|
24 |
-
CONCISE SUMMARY:"""
|
25 |
-
prompt = PromptTemplate.from_template(prompt_template)
|
26 |
-
refine_template = (
|
27 |
-
"Your job is to produce a final summary\n"
|
28 |
-
"We have provided an existing summary up to a certain point: {existing_answer}\n"
|
29 |
-
"We have the opportunity to refine the existing summary"
|
30 |
-
"(only if needed) with some more context below.\n"
|
31 |
-
"------------\n"
|
32 |
-
"{text}\n"
|
33 |
-
"------------\n"
|
34 |
-
"If the context isn't useful, return the original summary."
|
35 |
-
)
|
36 |
-
refine_prompt = PromptTemplate.from_template(refine_template)
|
37 |
-
chain = load_summarize_chain(
|
38 |
-
llm=llm,
|
39 |
-
chain_type="refine",
|
40 |
-
question_prompt=prompt,
|
41 |
-
refine_prompt=refine_prompt,
|
42 |
-
return_intermediate_steps=True,
|
43 |
-
input_key="input_documents",
|
44 |
-
output_key="output_text",
|
45 |
-
)
|
46 |
-
result = chain({"input_documents": docs}, return_only_outputs=True)
|
47 |
-
|
48 |
-
return result
|
49 |
-
|
50 |
-
def summarize_mapreduce(self, script):
|
51 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
|
52 |
-
texts = text_splitter.split_text(script)
|
53 |
-
text = [Document(page_content=t) for t in texts]
|
54 |
-
|
55 |
-
llm = TransformersLLM.from_model_id_low_bit(f"checkpoint\\{self.llm_version}")
|
56 |
-
|
57 |
-
# Map
|
58 |
-
map_template = """The following is a meeting recording
|
59 |
-
=========
|
60 |
-
{texts}
|
61 |
-
=========
|
62 |
-
Based on this list of recordings, please summary the main idea briefly
|
63 |
-
Helpful Answer:"""
|
64 |
-
map_prompt = PromptTemplate.from_template(map_template)
|
65 |
-
map_chain = LLMChain(llm=llm, prompt=map_prompt, llm_kwargs={"max_new_tokens": 512})
|
66 |
-
|
67 |
-
# Reduce
|
68 |
-
reduce_template = """The following is set of summaries:
|
69 |
-
=========
|
70 |
-
{texts}
|
71 |
-
=========
|
72 |
-
Take these and distill it into a final, consolidated summary of the meeting.
|
73 |
-
Helpful Answer:"""
|
74 |
-
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
75 |
-
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt, llm_kwargs={"max_new_tokens": 4096})
|
76 |
-
|
77 |
-
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
|
78 |
-
combine_documents_chain = StuffDocumentsChain(
|
79 |
-
llm_chain=reduce_chain, document_variable_name="texts"
|
80 |
-
)
|
81 |
-
|
82 |
-
# Combines and iteratively reduces the mapped documents
|
83 |
-
reduce_documents_chain = ReduceDocumentsChain(
|
84 |
-
combine_documents_chain=combine_documents_chain,
|
85 |
-
collapse_documents_chain=combine_documents_chain,
|
86 |
-
token_max=4000,
|
87 |
-
)
|
88 |
-
|
89 |
-
# Combining documents by mapping a chain over them, then combining results
|
90 |
-
map_reduce_chain = MapReduceDocumentsChain(
|
91 |
-
llm_chain=map_chain,
|
92 |
-
reduce_documents_chain=reduce_documents_chain,
|
93 |
-
document_variable_name="texts",
|
94 |
-
return_intermediate_steps=False,
|
95 |
-
)
|
96 |
-
|
97 |
-
result = map_reduce_chain({"input_documents": text}, return_only_outputs=True)
|
98 |
-
# print("-." * 40)
|
99 |
-
# print(result)
|
100 |
-
result = result['output_text'].split("Helpful Answer:").strip()[-1]
|
101 |
-
return result
|
102 |
-
|
103 |
-
def summarize(self, script):
|
104 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=0)
|
105 |
-
texts = text_splitter.split_text(script)
|
106 |
-
|
107 |
-
prompt_template = """The following is a piece of meeting recording:
|
108 |
-
<<<{text}>>>
|
109 |
-
Based on recording, summary the main idea fluently.
|
110 |
-
JUST SUMMARY!NO OTHER WORDS!
|
111 |
-
SUMMARY:"""
|
112 |
-
|
113 |
-
reduce_template = """The following is a meeting recording pieces:
|
114 |
-
<<<{text}>>>
|
115 |
-
Take these and distill it into a final, consolidated summary of the meeting.
|
116 |
-
JUST SUMMARY!NO OTHER WORDS!
|
117 |
-
SUMMARY:"""
|
118 |
-
|
119 |
-
print(len(texts))
|
120 |
-
for text in texts:
|
121 |
-
print(text)
|
122 |
-
print("\n")
|
123 |
-
|
124 |
-
llm = TransformersLLM.from_model_id_low_bit(
|
125 |
-
f"checkpoint\\{self.llm_version}")
|
126 |
-
sum_split = []
|
127 |
-
|
128 |
-
for text in texts:
|
129 |
-
response = llm(prompt=prompt_template.format(text=text), max_new_tokens=1024)
|
130 |
-
print(response)
|
131 |
-
response_answer = response.split("SUMMARY:")
|
132 |
-
|
133 |
-
sum_split.append(response_answer[1])
|
134 |
-
|
135 |
-
sum_all = "\n".join(sum_split)
|
136 |
-
|
137 |
-
result = llm(prompt=reduce_template.format(text=sum_all), max_new_tokens=4000)
|
138 |
-
result_split = result.split("SUMMARY:")
|
139 |
-
return result_split[1]
|
140 |
-
|
141 |
-
# # for test
|
142 |
-
# import argparse
|
143 |
-
#
|
144 |
-
# parser = argparse.ArgumentParser()
|
145 |
-
# parser.add_argument("--llm_version", default="Llama-2-7b-chat-hf-INT4", help="LLM model version")
|
146 |
-
# args = parser.parse_args()
|
147 |
-
# file_path = "../test.txt"
|
148 |
-
# with open(file_path, "r", encoding="utf-8") as file:
|
149 |
-
# content = file.read()
|
150 |
-
# Sumbot = Sum(args)
|
151 |
-
# result = Sumbot.summarize_map(content)
|
152 |
-
# print("-." * 20)
|
153 |
-
# print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|