Comment_Reply / app.py
joey1101's picture
Update app.py
200a0c9 verified
raw
history blame
7.21 kB
##########################################
# Step 0: 导入必需的库
##########################################
import streamlit as st
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoModelForCausalLM, AutoTokenizer, pipeline
from datasets import load_dataset
from IPython.display import Audio, display
import torch
import soundfile as sf
from google.colab import drive
from huggingface_hub import login
# Streamlit application title
st.title("Comment reply for you")
st.write("automative reply")
# Text input for user to enter the comment
text = st.text_area("Enter your comment", "")
##########################################
# Step 1:情感分析 - 分析用户评论的情感倾向
##########################################
# Perform tasks when the user clicks the "Comment" button
if st.button("Comment"):
pipe = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
# 使用 "j-hartmann/emotion-english-distilroberta-base" 模型进行多维度情感分类
emotion_classifier = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True
)
# 示例用户评论(可替换为实际评论)
user_review = "I love the fast delivery, but the product quality could be better."
# 对评论进行情感分析
emotion_results = emotion_classifier(user_review)[0] # 返回列表中的第一个结果(单条输入)
# 打印所有情感维度及其分数
print("情感分析结果(多维度):")
for emotion in emotion_results:
print(f"{emotion['label']}: {emotion['score']:.4f}")
st.write("Text:", text)
st.write("Label:", max_label)
st.write("Score:", max_score)
# 提取置信度最高的情感标签(可选)
dominant_emotion = max(emotion_results, key=lambda x: x['score'])
print("\n主导情感:", dominant_emotion['label'], f"(置信度: {dominant_emotion['score']:.2f})")
##########################################
# Step 2:回复生成 - 根据情感生成自动回复
##########################################
emotion_strategies = {
"anger": {
"prompt": (
"Customer complaint: '{review}'\n\n"
"As a customer service representative, craft a professional response that:\n"
"- Begins with sincere apology and acknowledgment\n"
"- Clearly explains solution process with concrete steps\n"
"- Offers appropriate compensation/redemption\n"
"- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
"Response:"
)
},
"disgust": {
"prompt": (
"Customer quality concern: '{review}'\n\n"
"As a customer service representative, craft a response that:\n"
"- Immediately acknowledges the product issue\n"
"- Explains quality control measures being taken\n"
"- Provides clear return/replacement instructions\n"
"- Offers goodwill gesture (3-4 sentences)\n\n"
"Response:"
)
},
"fear": {
"prompt": (
"Customer safety concern: '{review}'\n\n"
"As a customer service representative, craft a reassuring response that:\n"
"- Directly addresses the safety worries\n"
"- References relevant certifications/standards\n"
"- Offers dedicated support contact\n"
"- Provides satisfaction guarantee (3-4 sentences)\n\n"
"Response:"
)
},
"joy": {
"prompt": (
"Customer review: '{review}'\n\n"
"As a customer service representative, craft a concise response that:\n"
"- Specifically acknowledges both positive and constructive feedback\n"
"- Briefly mentions loyalty/referral programs\n"
"- Ends with shopping invitation (3-4 sentences)\n\n"
"Response:"
)
},
"neutral": {
"prompt": (
"Customer feedback: '{review}'\n\n"
"As a customer service representative, craft a balanced response that:\n"
"- Provides additional relevant product information\n"
"- Highlights key service features\n"
"- Politely requests more detailed feedback\n"
"- Maintains professional tone (3-4 sentences)\n\n"
"Response:"
)
},
"sadness": {
"prompt": (
"Customer disappointment: '{review}'\n\n"
"As a customer service representative, craft an empathetic response that:\n"
"- Shows genuine understanding of the issue\n"
"- Proposes personalized recovery solution\n"
"- Offers extended support options\n"
"- Maintains positive outlook (3-4 sentences)\n\n"
"Response:"
)
},
"surprise": {
"prompt": (
"Customer enthusiastic feedback: '{review}'\n\n"
"As a customer service representative, craft a response that:\n"
"- Matches customer's positive energy appropriately\n"
"- Highlights unexpected product benefits\n"
"- Invites to user community/events\n"
"- Maintains brand voice (3-4 sentences)\n\n"
"Response:"
)
}
}
# 生成回复Prompt
template = emotion_strategies[dominant_emotion['label'].lower()]["prompt"]
prompt = template.format(review=user_review)
print(prompt)
# 加载Llama-3作为text generation模型
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
input_length = inputs.input_ids.shape[1]
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
print(response)
##########################################
# Step 3:语音生成 - 根据回复合成语音
##########################################
# 加载模型和处理器
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
#speech_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
#vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
# 创建默认的说话人嵌入
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # 女性中性语音
# 文本预处理和语音合成
inputs = processor(text=response, return_tensors="pt")
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
# 使用声码器生成波形音频
with torch.no_grad():
speech = vocoder(spectrogram)
# 保存为WAV文件(16kHz采样率)
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
print("语音生成完成,已保存为 customer_service_response.wav")