Spaces:
Running
Running
File size: 9,633 Bytes
152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 2253128 152d61c b70e6a4 152d61c 2253128 b70e6a4 2253128 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 105a0a4 b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 152d61c b70e6a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
##########################################
# Step 0: Import required libraries
##########################################
import streamlit as st # For building the web application interface
from transformers import (
pipeline,
SpeechT5Processor,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan,
AutoModelForCausalLM,
AutoTokenizer
) # For sentiment analysis, text-to-speech, and text generation
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
import torch # For tensor operations
import soundfile as sf # For saving audio as .wav files
import sentencepiece # Required by SpeechT5Processor for tokenization
##########################################
# Streamlit application title and input
##########################################
# Display a deep blue title in large, visually appealing font
st.markdown(
"<h1 style='text-align: center; color: #00008B; font-size: 50px;'>Just Comment</h1>",
unsafe_allow_html=True
) # Set a deep blue title
# Display a gentle, warm subtitle below the title
st.markdown(
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend</h3>",
unsafe_allow_html=True
) # Show a friendly subtitle
# Provide a text area for user input with placeholder and tooltip
text = st.text_area(
"Enter your comment",
placeholder="Type something here...",
height=150,
help="Write a comment you would like us to respond to!" # Tooltip for guidance
) # Create a text input area
##########################################
# Step 1: Sentiment Analysis Function (Unused here)
##########################################
def analyze_dominant_emotion(user_review):
"""
Analyze the dominant emotion in the user's comment using a fine-tuned text classification model.
"""
emotion_classifier = pipeline(
"text-classification",
model="Thea231/jhartmann_emotion_finetuning",
return_all_scores=True
) # Load the sentiment classification model
emotion_results = emotion_classifier(user_review)[0] # Get sentiment scores of the input
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the highest scoring emotion
return dominant_emotion # Return the dominant emotion
##########################################
# Step 2: Response Generation Functions
##########################################
def prompt_gen(user_review):
"""
Generate a prompt based on the user's comment and detected emotion.
This function is defined but not used, as the response is fixed.
"""
dominant_emotion = analyze_dominant_emotion(user_review) # Determine the dominant emotion
emotion_strategies = {
"anger": {
"prompt": (
"Customer complaint: '{review}'\n\n"
"As a customer service representative, craft a professional response that:\n"
"- Begins with sincere apology and acknowledgment\n"
"- Clearly explains solution process with concrete steps\n"
"- Offers appropriate compensation/redemption\n"
"- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
"Response:"
)
},
"disgust": {
"prompt": (
"Customer quality concern: '{review}'\n\n"
"As a customer service representative, craft a response that:\n"
"- Immediately acknowledges the product issue\n"
"- Explains quality control measures being taken\n"
"- Provides clear return/replacement instructions\n"
"- Offers goodwill gesture (3-4 sentences)\n\n"
"Response:"
)
},
"fear": {
"prompt": (
"Customer safety concern: '{review}'\n\n"
"As a customer service representative, craft a reassuring response that:\n"
"- Directly addresses the safety worries\n"
"- References relevant certifications/standards\n"
"- Offers dedicated support contact\n"
"- Provides satisfaction guarantee (3-4 sentences)\n\n"
"Response:"
)
},
"joy": {
"prompt": (
"Customer review: '{review}'\n\n"
"As a customer service representative, craft a concise response that:\n"
"- Specifically acknowledges both positive and constructive feedback\n"
"- Briefly mentions loyalty/referral programs\n"
"- Ends with shopping invitation (3-4 sentences)\n\n"
"Response:"
)
},
"neutral": {
"prompt": (
"Customer feedback: '{review}'\n\n"
"As a customer service representative, craft a balanced response that:\n"
"- Provides additional relevant product information\n"
"- Highlights key service features\n"
"- Politely requests more detailed feedback\n"
"- Maintains professional tone (3-4 sentences)\n\n"
"Response:"
)
},
"sadness": {
"prompt": (
"Customer disappointment: '{review}'\n\n"
"As a customer service representative, craft an empathetic response that:\n"
"- Shows genuine understanding of the issue\n"
"- Proposes personalized recovery solution\n"
"- Offers extended support options\n"
"- Maintains positive outlook (3-4 sentences)\n\n"
"Response:"
)
},
"surprise": {
"prompt": (
"Customer enthusiastic feedback: '{review}'\n\n"
"As a customer service representative, craft a response that:\n"
"- Matches customer's positive energy appropriately\n"
"- Highlights unexpected product benefits\n"
"- Invites to user community/events\n"
"- Maintains brand voice (3-4 sentences)\n\n"
"Response:"
)
}
} # Mapping of each emotion to its response template
template = emotion_strategies[dominant_emotion['label'].lower()]["prompt"] # Select template based on emotion
prompt = template.format(review=user_review) # Format the template with the user's review
print(f"Prompt generated: {prompt}") # Debug: print the generated prompt using an f-string
return prompt # Return the constructed prompt
def response_gen(user_review):
"""
Generate a response based on the user's comment.
For this application, always return a fixed response message.
"""
fixed_response = ("Dear [Customer], I'm sorry to hear that you're experiencing a delay in delivery. "
"I understand how frustrating it can be when you're expecting a dress that you love. "
"I'd be happy to help you resolve this issue.")
print(f"Response generated: {fixed_response}") # Debug: print the generated response using an f-string
return fixed_response # Return the fixed response message
##########################################
# Step 3: Text-to-Speech Conversion Function
##########################################
def sound_gen(response):
"""
Convert the fixed response to speech and save it as a .wav file,
then embed an auto-playing audio player.
"""
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # Load the TTS processor
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # Load the TTS model
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load the vocoder for waveform generation
# Process the full response text (no truncation) for spectrogram generation
inputs = processor(text=response, return_tensors="pt") # Tokenize and process the response text for TTS
# Use dummy speaker embeddings (zeros) with the expected dimension (1 x 768)
speaker_embeddings = torch.zeros(1, 768) # Create placeholder speaker embeddings
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) # Generate the speech spectrogram
with torch.no_grad():
speech = vocoder(spectrogram) # Convert the spectrogram to an audio waveform using the vocoder
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) # Save the waveform as a .wav file
st.audio("customer_service_response.wav", start_time=0) # Embed an audio player that autoplays the audio
##########################################
# Main Function
##########################################
def main():
"""
The main function orchestrates response generation and text-to-speech conversion.
It displays only the fixed response and plays its audio.
"""
if text: # Check if the user has entered a comment (although the response is fixed)
response = response_gen(text) # Generate the fixed response message
st.markdown(
f"<p style='color:#3498DB; font-size:20px;'>{response}</p>",
unsafe_allow_html=True
) # Display the response in styled formatting (only the fixed message is shown)
sound_gen(response) # Convert the response to speech and play it
print(f"Final response output: {response}") # Debug: print the final response using an f-string
# Execute the main function when the script is run
if __name__ == "__main__":
main() # Call the main function
|