File size: 9,006 Bytes
152d61c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
##########################################
# Step 0: Import required libraries
##########################################
import streamlit as st  # For building the web application interface
from transformers import (
    pipeline,
    SpeechT5Processor,
    SpeechT5ForTextToSpeech,
    SpeechT5HifiGan,
    AutoModelForCausalLM,
    AutoTokenizer
)  # For sentiment analysis, text-to-speech, and text generation
from datasets import load_dataset  # For loading datasets (e.g., speaker embeddings)
import torch  # For tensor operations
import soundfile as sf  # For saving audio as .wav files
import sentencepiece  # Required by SpeechT5Processor for tokenization

##########################################
# Streamlit application title and input
##########################################
# Display a colorful, large title in a visually appealing font
st.markdown(
    "<h1 style='text-align: center; color: #FF5720; font-size: 50px;'>Just Comment</h1>",
    unsafe_allow_html=True
)  # Use HTML and CSS for a custom title design

# Display a smaller, gentle subtitle below the title
st.markdown(
    "<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend</h3>",
    unsafe_allow_html=True
)  # Use HTML for a friendly and soft-styled subtitle

# Add a well-designed text area for user input
text = st.text_area(
    "Enter your comment",
    placeholder="Type something here...",
    height=150,
    help="Write a comment you would like us to analyze and respond to!"  # Provide a helpful tooltip
)

##########################################
# Step 1: Sentiment Analysis Function
##########################################
def analyze_dominant_emotion(user_review):
    """
    Analyze the dominant emotion in the user's comment using a fine-tuned text classification model.
    """
    emotion_classifier = pipeline(
        "text-classification",
        model="Thea231/jhartmann_emotion_finetuning",
        return_all_scores=True
    )  # Load the fine-tuned text classification model from Hugging Face

    emotion_results = emotion_classifier(user_review)[0]  # Perform sentiment analysis on the input text
    dominant_emotion = max(emotion_results, key=lambda x: x['score'])  # Identify the emotion with the highest confidence
    return dominant_emotion  # Return the dominant emotion (label and score)

##########################################
# Step 2: Response Generation Function
##########################################


def response_gen(user_review):
    """
    Generate a concise and logical response based on the sentiment of the user's comment.
    """
    dominant_emotion = analyze_dominant_emotion(user_review)  # Get the dominant emotion of the user's comment
    emotion_label = dominant_emotion['label'].lower()  # Extract the emotion label in lowercase format
    
    # Define response templates for each emotion
    emotion_prompts = {
        "anger": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a professional response that:\n"
            "- Begins with sincere apology and acknowledgment\n"
            "- Clearly explains solution process with concrete steps\n"
            "- Offers appropriate compensation/redemption\n"
            "- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
            "Response:"
        ),
        "disgust": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a response that:\n"
            "- Immediately acknowledges the product issue\n"
            "- Explains quality control measures being taken\n"
            "- Provides clear return/replacement instructions\n"
            "- Offers goodwill gesture (3-4 sentences)\n\n"
            "Response:"
        ),
        "fear": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a reassuring response that:\n"
            "- Directly addresses the safety worries\n"
            "- References relevant certifications/standards\n"
            "- Offers dedicated support contact\n"
            "- Provides satisfaction guarantee (3-4 sentences)\n\n"
            "Response:"
        ),
        "joy": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a concise and enthusiastic response that:\n"
            "- Thanks the customer for their feedback\n"
            "- Acknowledges both positive and constructive comments\n"
            "- Invites them to explore loyalty programs\n\n"
            "Response:"
        ),
        "neutral": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a balanced response that:\n"
            "- Provides additional relevant product information\n"
            "- Highlights key service features\n"
            "- Politely requests more detailed feedback\n"
            "- Maintains professional tone (3-4 sentences)\n\n"
            "Response:"
        ),
        "sadness": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft an empathetic response that:\n"
            "- Shows genuine understanding of the issue\n"
            "- Proposes personalized recovery solution\n"
            "- Offers extended support options\n"
            "- Maintains positive outlook (3-4 sentences)\n\n"
            "Response:"
        ),
        "surprise": (
            f"'{user_review}'\n\n"
            "As a customer service representative, craft a response that:\n"
            "- Matches customer's positive energy appropriately\n"
            "- Highlights unexpected product benefits\n"
            "- Invites to user community/events\n"
            "- Maintains brand voice (3-4 sentences)\n\n"
            "Response:"
        )
    }
    
    prompt = emotion_prompts.get(
        emotion_label,
        f"Neutral feedback: '{user_review}'\n\nWrite a professional and concise response (50-200 words max).\n\nResponse:"
    )  # Default to neutral if emotion is not found

    # Load the tokenizer and language model for response generation
    tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")  # Load tokenizer for processing text inputs
    model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B")  # Load language model for response generation

    inputs = tokenizer(prompt, return_tensors="pt")  # Tokenize the input prompt
    outputs = model.generate(
        **inputs,
        max_new_tokens=300,
        min_length=75,  # Ensure concise and complete responses
        no_repeat_ngram_size=2,  # Avoid repetitive phrases
        temperature=0.7  # Add randomness for more natural responses
    )
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)  # Decode the generated response
    return response  # Return the response

##########################################
# Step 3: Text-to-Speech Conversion Function
##########################################
def sound_gen(response):
    """
    Convert the generated response to speech and save it as a .wav file.
    """
    processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")  # Pre-trained processor for TTS
    model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")  # Pre-trained TTS model
    vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")  # Vocoder for generating waveforms

    # Create speaker embedding to match text input
    embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")  # Load speaker embeddings
    speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)  # Use a default embedding

    inputs = processor(text=response, return_tensors="pt")  # Process text for spectrogram generation
    inputs["input_ids"] = inputs["input_ids"].to(torch.int32)  # Match tensor format (fix runtime error)
    spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)  # Generate the spectrogram

    with torch.no_grad():
        speech = vocoder(spectrogram)  # Convert spectrogram to waveform

    sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)  # Save as .wav file
    st.audio("customer_service_response.wav", start_time=0)  # Embed an auto-playing audio player

##########################################
# Main Function
##########################################
def main():
    """
    Main function to handle sentiment analysis, response generation, and text-to-speech functionalities.
    """
    if text:  # Check if the user has entered a comment
        response = response_gen(text)  # Generate the response
        st.markdown(
            f"<p style='color:#3498DB; font-size:20px;'>{response}</p>",
            unsafe_allow_html=True
        )  # Display the response with styled formatting
        sound_gen(response)  # Convert the response to speech and play it

# Execute the main function
if __name__ == "__main__":
    main()