Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
from PIL import Image, ImageFilter | |
import gradio as gr | |
import torch | |
import numpy as np | |
depth_pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Small-hf") | |
def compute_depth_map_pipeline(image: Image.Image, scale_factor: float) -> np.ndarray: | |
""" | |
Computes a depth map using the HF pipeline. | |
The returned depth is inverted (so near=0 and far=1) and scaled. | |
""" | |
result = depth_pipe(image)[0] | |
depth_map = np.array(result["depth"]) | |
depth_map = 1.0 - depth_map | |
depth_map *= scale_factor | |
return depth_map | |
def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max_blur: float) -> Image.Image: | |
blur_radii = np.linspace(0, max_blur, num_layers) | |
blur_versions = [image.filter(ImageFilter.GaussianBlur(r)) for r in blur_radii] | |
upper_bound = depth_map.max() | |
thresholds = np.linspace(0, upper_bound, num_layers + 1) | |
final_image = blur_versions[-1] | |
for i in range(num_layers - 1, -1, -1): | |
mask_array = np.logical_and(depth_map >= thresholds[i], | |
depth_map < thresholds[i + 1]).astype(np.uint8) * 255 | |
mask_image = Image.fromarray(mask_array, mode="L") | |
final_image = Image.composite(blur_versions[i], final_image, mask_image) | |
return final_image | |
def process_depth_blur_pipeline(uploaded_image, max_blur_value, scale_factor, num_layers): | |
if not isinstance(uploaded_image, Image.Image): | |
uploaded_image = Image.open(uploaded_image) | |
image = uploaded_image.convert("RGB").resize((512, 512)) | |
depth_map = compute_depth_map_pipeline(image, scale_factor) | |
final_image = layered_blur(image, depth_map, int(num_layers), max_blur_value) | |
return final_image | |
# --- Segmentation-Based Blur using BEN2 --- | |
def load_segmentation_model(): | |
global seg_model, seg_device | |
if "seg_model" not in globals(): | |
from ben2 import BEN_Base # Import BEN2 | |
seg_model = BEN_Base.from_pretrained("PramaLLC/BEN2") | |
seg_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
seg_model.to(seg_device).eval() | |
return seg_model, seg_device | |
def process_segmentation_blur(uploaded_image, seg_blur_radius: float): | |
if not isinstance(uploaded_image, Image.Image): | |
uploaded_image = Image.open(uploaded_image) | |
image = uploaded_image.convert("RGB").resize((512, 512)) | |
seg_model, seg_device = load_segmentation_model() | |
blurred_image = image.filter(ImageFilter.GaussianBlur(seg_blur_radius)) | |
# Generate segmentation mask (foreground) | |
foreground = seg_model.inference(image, refine_foreground=False) | |
foreground_rgba = foreground.convert("RGBA") | |
_, _, _, alpha = foreground_rgba.split() | |
binary_mask = alpha.point(lambda x: 255 if x > 128 else 0, mode="L") | |
final_image = Image.composite(image, blurred_image, binary_mask) | |
return final_image | |
# --- Merged Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Lens Blur & Gaussian Blur") | |
with gr.Tabs(): | |
with gr.Tab("Lens Blur"): | |
depth_img = gr.Image(type="pil", label="Upload Image") | |
depth_max_blur = gr.Slider(1.0, 5.0, value=3.0, step=0.1, label="Maximum Blur Radius") | |
depth_scale = gr.Slider(0.1, 1.0, value=0.5, step=0.1, label="Depth Scale Factor") | |
depth_layers = gr.Slider(2, 20, value=8, step=1, label="Number of Layers") | |
depth_out = gr.Image(label="Lens Blurred Image") | |
depth_button = gr.Button("Process Lens Blur") | |
depth_button.click(process_depth_blur_pipeline, | |
inputs=[depth_img, depth_max_blur, depth_scale, depth_layers], | |
outputs=depth_out) | |
with gr.Tab("Guassian Blur"): | |
seg_img = gr.Image(type="pil", label="Upload Image") | |
seg_blur = gr.Slider(5, 30, value=15, step=1, label="Segmentation Blur Radius") | |
seg_out = gr.Image(label="Gaussian Blurred Image") | |
seg_button = gr.Button("Gaussian Blur") | |
seg_button.click(process_segmentation_blur, inputs=[seg_img, seg_blur], outputs=seg_out) | |
if __name__ == "__main__": | |
demo.launch() | |