EEE515_Problem2 / app.py
joeWabbit's picture
Update app.py
032683a verified
raw
history blame
7.97 kB
import gradio as gr
import torch
import numpy as np
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
from PIL import Image, ImageFilter
import matplotlib.pyplot as plt
import matplotlib.cm as cm
# ---------------------------
# Depth Estimation Utilities
# ---------------------------
def compute_depth_map(image: Image.Image, scale_factor: float) -> np.ndarray:
"""
Loads the LiheYoung/depth-anything-large-hf model and computes a depth map.
The depth map is normalized, inverted (so that near=0 and far=1),
and multiplied by the given scale_factor.
"""
# Load model and processor from pretrained weights
image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf")
model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf")
# Prepare image for the model
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# Interpolate predicted depth map to match image size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1], # PIL image size is (width, height)
mode="bicubic",
align_corners=False,
)
# Normalize for visualization
depth_min = prediction.min()
depth_max = prediction.max()
depth_vis = (prediction - depth_min) / (depth_max - depth_min + 1e-8)
depth_map = depth_vis.squeeze().cpu().numpy()
# Invert so that near=0 and far=1, then scale
depth_map_inverted = 1.0 - depth_map
depth_map_inverted *= scale_factor
return depth_map_inverted
# ---------------------------
# Depth-Based Blur Functions
# ---------------------------
def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max_blur: float) -> Image.Image:
"""
Creates multiple blurred versions of the image (using Gaussian blur with radii from 0 to max_blur)
and composites them using masks generated from bins of the normalized depth map.
"""
blur_radii = np.linspace(0, max_blur, num_layers)
blur_versions = [image.filter(ImageFilter.GaussianBlur(radius)) for radius in blur_radii]
# Use a fixed range (0 to 1) since the depth map is normalized
thresholds = np.linspace(0, 1, num_layers + 1)
final_image = blur_versions[-1]
for i in range(num_layers - 1, -1, -1):
mask_array = np.logical_and(
depth_map >= thresholds[i],
depth_map < thresholds[i + 1]
).astype(np.uint8) * 255
mask_image = Image.fromarray(mask_array, mode="L")
final_image = Image.composite(blur_versions[i], final_image, mask_image)
return final_image
def process_depth_blur(uploaded_image, max_blur_value, scale_factor, num_layers):
"""
Resizes the uploaded image to 512x512, computes its depth map,
and applies layered blur based on the depth.
"""
if not isinstance(uploaded_image, Image.Image):
uploaded_image = Image.open(uploaded_image)
image = uploaded_image.convert("RGB").resize((512, 512))
depth_map = compute_depth_map(image, scale_factor)
final_image = layered_blur(image, depth_map, int(num_layers), max_blur_value)
return final_image
# ---------------------------
# Depth Heatmap Functions
# ---------------------------
def create_heatmap(depth_map: np.ndarray, intensity: float) -> Image.Image:
"""
Applies a colormap to the normalized depth map.
The 'intensity' slider multiplies the normalized depth values (clipped to [0,1])
before applying the "inferno" colormap.
"""
# Multiply depth map by intensity and clip to 0-1 range
normalized = np.clip(depth_map * intensity, 0, 1)
colormap = cm.get_cmap("inferno")
colored = colormap(normalized) # Returns an RGBA image in [0, 1]
heatmap = (colored[:, :, :3] * 255).astype(np.uint8) # drop alpha and convert to [0,255]
return Image.fromarray(heatmap)
def process_depth_heatmap(uploaded_image, intensity):
"""
Resizes the uploaded image to 512x512, computes its depth map (with scale factor 1.0),
and returns a heatmap visualization.
"""
if not isinstance(uploaded_image, Image.Image):
uploaded_image = Image.open(uploaded_image)
image = uploaded_image.convert("RGB").resize((512, 512))
depth_map = compute_depth_map(image, scale_factor=1.0)
heatmap_img = create_heatmap(depth_map, intensity)
return heatmap_img
# --- Segmentation-Based Blur using BEN2 ---
def load_segmentation_model():
"""
Loads and caches the segmentation model from BEN2.
Ensure you have ben2 installed and accessible in your path.
"""
global seg_model, seg_device
if "seg_model" not in globals():
from ben2 import BEN_Base # Import BEN2
seg_model = BEN_Base.from_pretrained("PramaLLC/BEN2")
seg_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seg_model.to(seg_device).eval()
return seg_model, seg_device
def process_segmentation_blur(uploaded_image, seg_blur_radius: float):
"""
Processes the image with segmentation-based blur.
The image is resized to 512x512. A Gaussian blur with the specified radius is applied,
then the segmentation mask is computed to composite the sharp foreground over the blurred background.
"""
if not isinstance(uploaded_image, Image.Image):
uploaded_image = Image.open(uploaded_image)
image = uploaded_image.convert("RGB").resize((512, 512))
seg_model, seg_device = load_segmentation_model()
blurred_image = image.filter(ImageFilter.GaussianBlur(seg_blur_radius))
# Generate segmentation mask (foreground)
foreground = seg_model.inference(image, refine_foreground=False)
foreground_rgba = foreground.convert("RGBA")
_, _, _, alpha = foreground_rgba.split()
binary_mask = alpha.point(lambda x: 255 if x > 128 else 0, mode="L")
final_image = Image.composite(image, blurred_image, binary_mask)
return final_image
# --- Merged Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Depth-Based vs Segmentation-Based Blur")
with gr.Tabs():
with gr.Tab("Depth Blur"):
img_input = gr.Image(type="pil", label="Upload Image")
blur_slider = gr.Slider(1, 50, value=20, label="Maximum Blur Radius")
scale_slider = gr.Slider(0.1, 2.0, value=1.0, label="Depth Scale Factor")
layers_slider = gr.Slider(2, 10, value=5, label="Number of Layers")
blur_output = gr.Image(label="Depth Blur Result")
blur_button = gr.Button("Process Depth Blur")
blur_button.click(
process_depth_blur,
inputs=[img_input, blur_slider, scale_slider, layers_slider],
outputs=blur_output
)
with gr.Tab("Depth Heatmap"):
img_input2 = gr.Image(type="pil", label="Upload Image")
intensity_slider = gr.Slider(0.5, 5.0, value=1.0, label="Heatmap Intensity")
heatmap_output = gr.Image(label="Depth Heatmap")
heatmap_button = gr.Button("Generate Depth Heatmap")
heatmap_button.click(
process_depth_heatmap,
inputs=[img_input2, intensity_slider],
outputs=heatmap_output
)
with gr.Tab("Segmentation-Based Blur (BEN2)"):
seg_img = gr.Image(type="pil", label="Upload Image")
seg_blur = gr.Slider(5, 30, value=15, step=1, label="Segmentation Blur Radius")
seg_out = gr.Image(label="Segmentation-Based Blurred Image")
seg_button = gr.Button("Process Segmentation Blur")
seg_button.click(process_segmentation_blur, inputs=[seg_img, seg_blur], outputs=seg_out)
if __name__ == "__main__":
# Optionally, set share=True to generate a public link.
demo.launch(share=True)