File size: 7,973 Bytes
f86bc23
411ded6
4200d56
032683a
 
 
 
9bcecd2
032683a
 
 
 
da8d67c
032683a
 
 
da8d67c
032683a
 
 
 
 
 
 
 
 
4200d56
032683a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4200d56
9bcecd2
032683a
 
9bcecd2
4200d56
032683a
 
 
4200d56
 
032683a
 
 
 
4200d56
 
 
 
032683a
9bcecd2
032683a
 
9bcecd2
4200d56
 
 
032683a
4200d56
 
 
032683a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4200d56
 
9bcecd2
 
 
 
da8d67c
 
 
 
 
 
 
f86bc23
da8d67c
9bcecd2
 
 
 
 
411ded6
 
 
da8d67c
 
 
 
 
 
 
 
 
411ded6
f86bc23
4200d56
411ded6
9bcecd2
4200d56
032683a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bcecd2
4200d56
 
9bcecd2
 
4200d56
f86bc23
 
9bcecd2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr
import torch
import numpy as np
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
from PIL import Image, ImageFilter
import matplotlib.pyplot as plt
import matplotlib.cm as cm

# ---------------------------
# Depth Estimation Utilities
# ---------------------------
def compute_depth_map(image: Image.Image, scale_factor: float) -> np.ndarray:
    """
    Loads the LiheYoung/depth-anything-large-hf model and computes a depth map.
    The depth map is normalized, inverted (so that near=0 and far=1),
    and multiplied by the given scale_factor.
    """
    # Load model and processor from pretrained weights
    image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf")
    model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf")
    
    # Prepare image for the model
    inputs = image_processor(images=image, return_tensors="pt")
    with torch.no_grad():
        outputs = model(**inputs)
        predicted_depth = outputs.predicted_depth

    # Interpolate predicted depth map to match image size
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=image.size[::-1],  # PIL image size is (width, height)
        mode="bicubic",
        align_corners=False,
    )
    # Normalize for visualization
    depth_min = prediction.min()
    depth_max = prediction.max()
    depth_vis = (prediction - depth_min) / (depth_max - depth_min + 1e-8)
    depth_map = depth_vis.squeeze().cpu().numpy()
    # Invert so that near=0 and far=1, then scale
    depth_map_inverted = 1.0 - depth_map
    depth_map_inverted *= scale_factor
    return depth_map_inverted

# ---------------------------
# Depth-Based Blur Functions
# ---------------------------
def layered_blur(image: Image.Image, depth_map: np.ndarray, num_layers: int, max_blur: float) -> Image.Image:
    """
    Creates multiple blurred versions of the image (using Gaussian blur with radii from 0 to max_blur)
    and composites them using masks generated from bins of the normalized depth map.
    """
    blur_radii = np.linspace(0, max_blur, num_layers)
    blur_versions = [image.filter(ImageFilter.GaussianBlur(radius)) for radius in blur_radii]
    # Use a fixed range (0 to 1) since the depth map is normalized
    thresholds = np.linspace(0, 1, num_layers + 1)
    final_image = blur_versions[-1]
    for i in range(num_layers - 1, -1, -1):
        mask_array = np.logical_and(
            depth_map >= thresholds[i],
            depth_map < thresholds[i + 1]
        ).astype(np.uint8) * 255
        mask_image = Image.fromarray(mask_array, mode="L")
        final_image = Image.composite(blur_versions[i], final_image, mask_image)
    return final_image

def process_depth_blur(uploaded_image, max_blur_value, scale_factor, num_layers):
    """
    Resizes the uploaded image to 512x512, computes its depth map,
    and applies layered blur based on the depth.
    """
    if not isinstance(uploaded_image, Image.Image):
        uploaded_image = Image.open(uploaded_image)
    image = uploaded_image.convert("RGB").resize((512, 512))
    depth_map = compute_depth_map(image, scale_factor)
    final_image = layered_blur(image, depth_map, int(num_layers), max_blur_value)
    return final_image

# ---------------------------
# Depth Heatmap Functions
# ---------------------------
def create_heatmap(depth_map: np.ndarray, intensity: float) -> Image.Image:
    """
    Applies a colormap to the normalized depth map.
    The 'intensity' slider multiplies the normalized depth values (clipped to [0,1])
    before applying the "inferno" colormap.
    """
    # Multiply depth map by intensity and clip to 0-1 range
    normalized = np.clip(depth_map * intensity, 0, 1)
    colormap = cm.get_cmap("inferno")
    colored = colormap(normalized)  # Returns an RGBA image in [0, 1]
    heatmap = (colored[:, :, :3] * 255).astype(np.uint8)  # drop alpha and convert to [0,255]
    return Image.fromarray(heatmap)

def process_depth_heatmap(uploaded_image, intensity):
    """
    Resizes the uploaded image to 512x512, computes its depth map (with scale factor 1.0),
    and returns a heatmap visualization.
    """
    if not isinstance(uploaded_image, Image.Image):
        uploaded_image = Image.open(uploaded_image)
    image = uploaded_image.convert("RGB").resize((512, 512))
    depth_map = compute_depth_map(image, scale_factor=1.0)
    heatmap_img = create_heatmap(depth_map, intensity)
    return heatmap_img

# --- Segmentation-Based Blur using BEN2 ---
def load_segmentation_model():
    """
    Loads and caches the segmentation model from BEN2.
    Ensure you have ben2 installed and accessible in your path.
    """
    global seg_model, seg_device
    if "seg_model" not in globals():
        from ben2 import BEN_Base  # Import BEN2
        seg_model = BEN_Base.from_pretrained("PramaLLC/BEN2")
        seg_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        seg_model.to(seg_device).eval()
    return seg_model, seg_device

def process_segmentation_blur(uploaded_image, seg_blur_radius: float):
    """
    Processes the image with segmentation-based blur.
    The image is resized to 512x512. A Gaussian blur with the specified radius is applied,
    then the segmentation mask is computed to composite the sharp foreground over the blurred background.
    """
    if not isinstance(uploaded_image, Image.Image):
        uploaded_image = Image.open(uploaded_image)
    image = uploaded_image.convert("RGB").resize((512, 512))
    seg_model, seg_device = load_segmentation_model()
    blurred_image = image.filter(ImageFilter.GaussianBlur(seg_blur_radius))
    
    # Generate segmentation mask (foreground)
    foreground = seg_model.inference(image, refine_foreground=False)
    foreground_rgba = foreground.convert("RGBA")
    _, _, _, alpha = foreground_rgba.split()
    binary_mask = alpha.point(lambda x: 255 if x > 128 else 0, mode="L")
    final_image = Image.composite(image, blurred_image, binary_mask)
    return final_image

# --- Merged Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# Depth-Based vs Segmentation-Based Blur")
    with gr.Tabs():
        with gr.Tab("Depth Blur"):
            img_input = gr.Image(type="pil", label="Upload Image")
            blur_slider = gr.Slider(1, 50, value=20, label="Maximum Blur Radius")
            scale_slider = gr.Slider(0.1, 2.0, value=1.0, label="Depth Scale Factor")
            layers_slider = gr.Slider(2, 10, value=5, label="Number of Layers")
            blur_output = gr.Image(label="Depth Blur Result")
            blur_button = gr.Button("Process Depth Blur")
            blur_button.click(
                process_depth_blur, 
                inputs=[img_input, blur_slider, scale_slider, layers_slider], 
                outputs=blur_output
            )
        with gr.Tab("Depth Heatmap"):
            img_input2 = gr.Image(type="pil", label="Upload Image")
            intensity_slider = gr.Slider(0.5, 5.0, value=1.0, label="Heatmap Intensity")
            heatmap_output = gr.Image(label="Depth Heatmap")
            heatmap_button = gr.Button("Generate Depth Heatmap")
            heatmap_button.click(
                process_depth_heatmap, 
                inputs=[img_input2, intensity_slider], 
                outputs=heatmap_output
            )
        with gr.Tab("Segmentation-Based Blur (BEN2)"):
            seg_img = gr.Image(type="pil", label="Upload Image")
            seg_blur = gr.Slider(5, 30, value=15, step=1, label="Segmentation Blur Radius")
            seg_out = gr.Image(label="Segmentation-Based Blurred Image")
            seg_button = gr.Button("Process Segmentation Blur")
            seg_button.click(process_segmentation_blur, inputs=[seg_img, seg_blur], outputs=seg_out)

if __name__ == "__main__":
    # Optionally, set share=True to generate a public link.
    demo.launch(share=True)