jkorstad commited on
Commit
d4ff93a
·
verified ·
1 Parent(s): e008953

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +90 -3
app.py CHANGED
@@ -1,7 +1,94 @@
1
  import gradio as
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  demo.launch()
 
1
  import gradio as
2
 
3
+ import gradio as gr
4
+ from transformers import AutoProcessor, AutoModelForCausalLM
5
+ from pdf2image import convert_from_path
6
+ import base64
7
+ import io
8
+ from PIL import Image
9
 
10
+ # Load the OCR model and processor from Hugging Face
11
+ processor = AutoProcessor.from_pretrained("allenai/olmOCR-7B-0225-preview")
12
+ model = AutoModelForCausalLM.from_pretrained("allenai/olmOCR-7B-0225-preview")
13
+
14
+ def process_pdf(pdf_file):
15
+ """
16
+ Process the uploaded PDF file, extract text from each page, and generate HTML
17
+ to display each page's image and text with copy buttons.
18
+ """
19
+ # Check if a PDF file was uploaded
20
+ if pdf_file is None:
21
+
22
+ return "<p>Please upload a PDF file.</p>"
23
+
24
+ # Convert PDF to images
25
+ try:
26
+
27
+ pages = convert_from_path(pdf_file.name)
28
+ except Exception as e:
29
+ return f"<p>Error converting PDF to images: {str(e)}</p>"
30
+
31
+ # Start building the HTML output
32
+ html = '<div><button onclick="copyAll()" style="margin-bottom: 10px;">Copy All</button></div><div id="pages">'
33
+
34
+ # Process each page
35
+ for i, page in enumerate(pages):
36
+ # Convert the page image to base64 for embedding in HTML
37
+ buffered = io.BytesIO()
38
+ page.save(buffered, format="PNG")
39
+ img_str = base64.b64encode(buffered.getvalue()).decode()
40
+ img_data = f"data:image/png;base64,{img_str}"
41
+
42
+ # Extract text from the page using the OCR model
43
+ try:
44
+ inputs = processor(text="Extract the text from this image.", images=page, return_tensors="pt")
45
+ outputs = model.generate(**inputs)
46
+ text = processor.decode(outputs[0], skip_special_tokens=True)
47
+ except Exception as e:
48
+ text = f"Error extracting text: {str(e)}"
49
+
50
+ # Generate HTML for this page's section
51
+ textarea_id = f"text{i+1}"
52
+ html += f'''
53
+ <div class="page" style="margin-bottom: 20px; border-bottom: 1px solid #ccc; padding-bottom: 20px;">
54
+ <h3>Page {i+1}</h3>
55
+ <div style="display: flex; align-items: flex-start;">
56
+ <img src="{img_data}" alt="Page {i+1}" style="max-width: 300px; margin-right: 20px;">
57
+ <div style="flex-grow: 1;">
58
+ <textarea id="{textarea_id}" rows="10" style="width: 100%;">{text}</textarea>
59
+ <button onclick="copyText('{textarea_id}')" style="margin-top: 5px;">Copy</button>
60
+ </div>
61
+ </div>
62
+ </div>
63
+ '''
64
+
65
+ # Close the pages div and add JavaScript for copy functionality
66
+ html += '</div>'
67
+ html += '''
68
+ <script>
69
+ function copyText(id) {
70
+ var text = document.getElementById(id);
71
+ text.select();
72
+ document.execCommand("copy");
73
+ }
74
+ function copyAll() {
75
+ var texts = document.querySelectorAll("#pages textarea");
76
+ var allText = Array.from(texts).map(t => t.value).join("\\n\\n");
77
+ navigator.clipboard.writeText(allText);
78
+ }
79
+ </script>
80
+ '''
81
+ return html
82
+
83
+ # Define the Gradio interface
84
+ with gr.Blocks(title="PDF Text Extractor") as demo:
85
+ gr.Markdown("# PDF Text Extractor")
86
+ gr.Markdown("Upload a PDF file and click 'Extract Text' to see each page's image and extracted text.")
87
+ with gr.Row():
88
+ pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
89
+ submit_btn = gr.Button("Extract Text")
90
+ output_html = gr.HTML()
91
+ submit_btn.click(fn=process_pdf, inputs=pdf_input, outputs=output_html)
92
+
93
+ # Launch the interface
94
  demo.launch()