Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,19 +8,25 @@ import pandas as pd
|
|
8 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
9 |
|
10 |
# --- Basic Agent Definition ---
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
15 |
"""
|
16 |
-
Fetches all questions, runs the BasicAgent on them,
|
17 |
-
|
18 |
"""
|
19 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
20 |
-
space_id = os.getenv("SPACE_ID")
|
21 |
|
22 |
if profile:
|
23 |
-
username= f"{profile.username}"
|
24 |
print(f"User logged in: {username}")
|
25 |
else:
|
26 |
print("User not logged in.")
|
@@ -28,16 +34,13 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
28 |
|
29 |
api_url = DEFAULT_API_URL
|
30 |
questions_url = f"{api_url}/questions"
|
31 |
-
submit_url = f"{api_url}/submit"
|
32 |
|
33 |
# 1. Instantiate Agent
|
34 |
try:
|
35 |
-
agent = BasicAgent()
|
36 |
except Exception as e:
|
37 |
print(f"Error instantiating agent: {e}")
|
38 |
return f"Error initializing agent: {e}", None
|
39 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
40 |
-
print(agent_code)
|
41 |
|
42 |
# 2. Fetch Questions
|
43 |
print(f"Fetching questions from: {questions_url}")
|
@@ -46,16 +49,15 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
46 |
response.raise_for_status()
|
47 |
questions_data = response.json()
|
48 |
if not questions_data:
|
49 |
-
|
50 |
-
|
51 |
print(f"Fetched {len(questions_data)} questions.")
|
52 |
except requests.exceptions.RequestException as e:
|
53 |
print(f"Error fetching questions: {e}")
|
54 |
return f"Error fetching questions: {e}", None
|
55 |
|
56 |
-
# 3. Run
|
57 |
results_log = []
|
58 |
-
answers_payload = []
|
59 |
print(f"Running agent on {len(questions_data)} questions...")
|
60 |
for item in questions_data:
|
61 |
task_id = item.get("task_id")
|
@@ -65,63 +67,26 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
65 |
continue
|
66 |
try:
|
67 |
submitted_answer = agent(question_text)
|
68 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
69 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
70 |
except Exception as e:
|
71 |
-
|
72 |
-
|
73 |
|
74 |
-
if not
|
75 |
-
print("Agent did not produce any answers
|
76 |
-
return "Agent did not produce any answers
|
77 |
|
78 |
-
# 4.
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
87 |
-
response.raise_for_status()
|
88 |
-
result_data = response.json()
|
89 |
-
final_status = (
|
90 |
-
f"Submission Successful!\n"
|
91 |
-
f"User: {result_data.get('username')}\n"
|
92 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
93 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
94 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
95 |
-
)
|
96 |
-
print("Submission successful.")
|
97 |
-
results_df = pd.DataFrame(results_log)
|
98 |
-
return final_status, results_df
|
99 |
-
except requests.exceptions.HTTPError as e:
|
100 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
101 |
-
try:
|
102 |
-
error_json = e.response.json()
|
103 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
104 |
-
except requests.exceptions.JSONDecodeError:
|
105 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
106 |
-
status_message = f"Submission Failed: {error_detail}"
|
107 |
-
print(status_message)
|
108 |
-
results_df = pd.DataFrame(results_log)
|
109 |
-
return status_message, results_df
|
110 |
-
except requests.exceptions.Timeout:
|
111 |
-
status_message = "Submission Failed: The request timed out."
|
112 |
-
print(status_message)
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return status_message, results_df
|
115 |
-
except requests.exceptions.RequestException as e:
|
116 |
-
status_message = f"Submission Failed: Network error - {e}"
|
117 |
-
print(status_message)
|
118 |
-
results_df = pd.DataFrame(results_log)
|
119 |
-
return status_message, results_df
|
120 |
-
except Exception as e:
|
121 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
122 |
-
print(status_message)
|
123 |
-
results_df = pd.DataFrame(results_log)
|
124 |
-
return status_message, results_df
|
125 |
|
126 |
|
127 |
# --- Build Gradio Interface using Blocks ---
|
@@ -135,17 +100,16 @@ with gr.Blocks() as demo:
|
|
135 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
136 |
---
|
137 |
**Disclaimers:**
|
138 |
-
Once clicking on the "submit button, it can take quite some time (
|
139 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution.
|
140 |
"""
|
141 |
)
|
142 |
|
143 |
gr.LoginButton()
|
144 |
|
145 |
-
run_button = gr.Button("Run Evaluation &
|
146 |
|
147 |
-
status_output = gr.Textbox(label="Run Status /
|
148 |
-
# Removed max_rows=10 from DataFrame constructor
|
149 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
150 |
|
151 |
run_button.click(
|
@@ -155,9 +119,8 @@ with gr.Blocks() as demo:
|
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
158 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
159 |
space_host_startup = os.getenv("SPACE_HOST")
|
160 |
-
space_id_startup = os.getenv("SPACE_ID")
|
161 |
|
162 |
if space_host_startup:
|
163 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -165,7 +128,7 @@ if __name__ == "__main__":
|
|
165 |
else:
|
166 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
167 |
|
168 |
-
if space_id_startup:
|
169 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
170 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
171 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
|
|
8 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
9 |
|
10 |
# --- Basic Agent Definition ---
|
11 |
+
class BasicAgent:
|
12 |
+
def __init__(self):
|
13 |
+
print("BasicAgent initialized.")
|
14 |
+
def __call__(self, question: str) -> str:
|
15 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
16 |
+
fixed_answer = "This is a default answer."
|
17 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
18 |
+
return fixed_answer
|
19 |
|
20 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
21 |
"""
|
22 |
+
Fetches all questions, runs the BasicAgent on them, and prints the results.
|
23 |
+
No submission to external server.
|
24 |
"""
|
25 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
26 |
+
space_id = os.getenv("SPACE_ID")
|
27 |
|
28 |
if profile:
|
29 |
+
username = f"{profile.username}"
|
30 |
print(f"User logged in: {username}")
|
31 |
else:
|
32 |
print("User not logged in.")
|
|
|
34 |
|
35 |
api_url = DEFAULT_API_URL
|
36 |
questions_url = f"{api_url}/questions"
|
|
|
37 |
|
38 |
# 1. Instantiate Agent
|
39 |
try:
|
40 |
+
agent = BasicAgent()
|
41 |
except Exception as e:
|
42 |
print(f"Error instantiating agent: {e}")
|
43 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
44 |
|
45 |
# 2. Fetch Questions
|
46 |
print(f"Fetching questions from: {questions_url}")
|
|
|
49 |
response.raise_for_status()
|
50 |
questions_data = response.json()
|
51 |
if not questions_data:
|
52 |
+
print("Fetched questions list is empty.")
|
53 |
+
return "Fetched questions list is empty or invalid format.", None
|
54 |
print(f"Fetched {len(questions_data)} questions.")
|
55 |
except requests.exceptions.RequestException as e:
|
56 |
print(f"Error fetching questions: {e}")
|
57 |
return f"Error fetching questions: {e}", None
|
58 |
|
59 |
+
# 3. Run Agent
|
60 |
results_log = []
|
|
|
61 |
print(f"Running agent on {len(questions_data)} questions...")
|
62 |
for item in questions_data:
|
63 |
task_id = item.get("task_id")
|
|
|
67 |
continue
|
68 |
try:
|
69 |
submitted_answer = agent(question_text)
|
|
|
70 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
71 |
except Exception as e:
|
72 |
+
print(f"Error running agent on task {task_id}: {e}")
|
73 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
74 |
|
75 |
+
if not results_log:
|
76 |
+
print("Agent did not produce any answers.")
|
77 |
+
return "Agent did not produce any answers.", pd.DataFrame(results_log)
|
78 |
|
79 |
+
# 4. Print the Results
|
80 |
+
print(f"Results from running the agent on questions:")
|
81 |
+
for result in results_log:
|
82 |
+
print(f"Task ID: {result['Task ID']}")
|
83 |
+
print(f"Question: {result['Question']}")
|
84 |
+
print(f"Submitted Answer: {result['Submitted Answer']}")
|
85 |
+
print("-" * 50)
|
86 |
|
87 |
+
# Returning the results as a DataFrame
|
88 |
+
results_df = pd.DataFrame(results_log)
|
89 |
+
return "Evaluation completed. Check the results printed above.", results_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
# --- Build Gradio Interface using Blocks ---
|
|
|
100 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
101 |
---
|
102 |
**Disclaimers:**
|
103 |
+
Once clicking on the "submit button, it can take quite some time (this is the time for the agent to go through all the questions).
|
104 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution.
|
105 |
"""
|
106 |
)
|
107 |
|
108 |
gr.LoginButton()
|
109 |
|
110 |
+
run_button = gr.Button("Run Evaluation & Print Results")
|
111 |
|
112 |
+
status_output = gr.Textbox(label="Run Status / Evaluation Result", lines=5, interactive=False)
|
|
|
113 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
114 |
|
115 |
run_button.click(
|
|
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
122 |
space_host_startup = os.getenv("SPACE_HOST")
|
123 |
+
space_id_startup = os.getenv("SPACE_ID")
|
124 |
|
125 |
if space_host_startup:
|
126 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
128 |
else:
|
129 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
130 |
|
131 |
+
if space_id_startup:
|
132 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
133 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
134 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|