Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,105 +1,25 @@
|
|
1 |
import os
|
2 |
import requests
|
3 |
-
import urllib.parse
|
4 |
-
from bs4 import BeautifulSoup
|
5 |
|
6 |
class DuckDuckGoAgent:
|
7 |
def __init__(self):
|
8 |
print("DuckDuckGoAgent initialized.")
|
9 |
-
self.headers = {
|
10 |
-
"User-Agent": "Mozilla/5.0"
|
11 |
-
}
|
12 |
-
|
13 |
-
# Support for multiple model backends
|
14 |
-
self.supported_models = {
|
15 |
-
"huggingface": self.call_huggingface_llm,
|
16 |
-
# You can easily extend this dictionary to support:
|
17 |
-
# "openai": self.call_openai_model,
|
18 |
-
# "lite_llm": self.call_litellm_model,
|
19 |
-
# "custom_server": self.call_custom_model,
|
20 |
-
}
|
21 |
|
22 |
-
self.default_model = "huggingface"
|
23 |
self.model_config = {
|
24 |
-
"
|
25 |
-
|
26 |
-
"model_name": "mistralai/Mistral-7B-Instruct-v0.1"
|
27 |
-
}
|
28 |
}
|
29 |
|
30 |
def __call__(self, question: str) -> str:
|
31 |
-
"""
|
32 |
-
Main method to process a question. It first tries DuckDuckGo,
|
33 |
-
then scraping, and finally uses a language model if needed.
|
34 |
-
"""
|
35 |
print(f"Agent received question: {question[:50]}...")
|
36 |
-
answer = self.
|
37 |
print(f"Agent returning answer: {answer}")
|
38 |
return answer.strip()
|
39 |
|
40 |
-
def get_duckduckgo_answer(self, query: str) -> str:
|
41 |
-
"""
|
42 |
-
Attempt to get an answer from the DuckDuckGo API.
|
43 |
-
If no abstract text is found, fall back to scraping.
|
44 |
-
"""
|
45 |
-
search_query = urllib.parse.quote(query)
|
46 |
-
url = f"https://api.duckduckgo.com/?q={search_query}&format=json&no_html=1&skip_disambig=1"
|
47 |
-
|
48 |
-
try:
|
49 |
-
response = requests.get(url, timeout=10)
|
50 |
-
if response.status_code == 200:
|
51 |
-
data = response.json()
|
52 |
-
if 'AbstractText' in data and data['AbstractText']:
|
53 |
-
return data['AbstractText'][:200]
|
54 |
-
else:
|
55 |
-
print("No abstract found, falling back to scraping.")
|
56 |
-
return self.scrape_duckduckgo(query)
|
57 |
-
else:
|
58 |
-
print(f"DuckDuckGo API failed with status: {response.status_code}")
|
59 |
-
return self.scrape_duckduckgo(query)
|
60 |
-
except Exception as e:
|
61 |
-
print(f"Error contacting DuckDuckGo API: {e}")
|
62 |
-
return self.scrape_duckduckgo(query)
|
63 |
-
|
64 |
-
def scrape_duckduckgo(self, query: str) -> str:
|
65 |
-
"""
|
66 |
-
Fallback to scraping DuckDuckGo search results if API fails or no abstract found.
|
67 |
-
"""
|
68 |
-
print("Using fallback: scraping HTML results.")
|
69 |
-
try:
|
70 |
-
response = requests.post(
|
71 |
-
"https://html.duckduckgo.com/html/",
|
72 |
-
data={"q": query},
|
73 |
-
headers=self.headers,
|
74 |
-
timeout=10
|
75 |
-
)
|
76 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
77 |
-
snippets = soup.select(".result__snippet")
|
78 |
-
for s in snippets:
|
79 |
-
text = s.get_text().strip()
|
80 |
-
if text:
|
81 |
-
return text[:200]
|
82 |
-
print("No useful snippets found, falling back to language model.")
|
83 |
-
return self.call_model_backend(query)
|
84 |
-
except Exception as e:
|
85 |
-
print(f"Error scraping DuckDuckGo: {e}")
|
86 |
-
return self.call_model_backend(query)
|
87 |
-
|
88 |
def call_model_backend(self, prompt: str) -> str:
|
89 |
-
""
|
90 |
-
|
91 |
-
"""
|
92 |
-
if self.default_model in self.supported_models:
|
93 |
-
return self.supported_models[self.default_model](prompt)
|
94 |
-
return "No valid model backend configured."
|
95 |
-
|
96 |
-
def call_huggingface_llm(self, prompt: str) -> str:
|
97 |
-
"""
|
98 |
-
Call Hugging Face Inference API as fallback LLM.
|
99 |
-
"""
|
100 |
-
config = self.model_config.get("huggingface", {})
|
101 |
-
api_key = config.get("api_key")
|
102 |
-
model = config.get("model_name")
|
103 |
|
104 |
if not api_key or not model:
|
105 |
return "Error: Hugging Face API Token or model not configured."
|
|
|
1 |
import os
|
2 |
import requests
|
|
|
|
|
3 |
|
4 |
class DuckDuckGoAgent:
|
5 |
def __init__(self):
|
6 |
print("DuckDuckGoAgent initialized.")
|
7 |
+
self.headers = {"User-Agent": "Mozilla/5.0"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
self.model_config = {
|
10 |
+
"api_key": os.getenv("HF_API_TOKEN"),
|
11 |
+
"model_name": "mistralai/Mistral-7B-Instruct-v0.1"
|
|
|
|
|
12 |
}
|
13 |
|
14 |
def __call__(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
15 |
print(f"Agent received question: {question[:50]}...")
|
16 |
+
answer = self.call_model_backend(question)
|
17 |
print(f"Agent returning answer: {answer}")
|
18 |
return answer.strip()
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def call_model_backend(self, prompt: str) -> str:
|
21 |
+
api_key = self.model_config.get("api_key")
|
22 |
+
model = self.model_config.get("model_name")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
if not api_key or not model:
|
25 |
return "Error: Hugging Face API Token or model not configured."
|