jjvelezo commited on
Commit
6165204
·
verified ·
1 Parent(s): d226f83

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +197 -0
app.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
6
+
7
+ # (Keep Constants as is)
8
+ # --- Constants ---
9
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+
11
+ # --- Basic Agent Definition ---
12
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
+ class BasicAgent:
14
+ def __init__(self):
15
+ print("BasicAgent initialized.")
16
+ def __call__(self, question: str) -> str:
17
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
18
+ fixed_answer = "This is a default answer."
19
+ print(f"Agent returning fixed answer: {fixed_answer}")
20
+ return fixed_answer
21
+
22
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
23
+ """
24
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
25
+ and displays the results.
26
+ """
27
+ # --- Determine HF Space Runtime URL and Repo URL ---
28
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
+
30
+ if profile:
31
+ username= f"{'jujovele'}"
32
+ print(f"User logged in: {username}")
33
+ else:
34
+ print("User not logged in.")
35
+ return "Please Login to Hugging Face with the button.", None
36
+
37
+ api_url = "https://agents-course-unit4-scoring.hf.space/questions"
38
+
39
+ questions_url = f"{api_url}/questions"
40
+ submit_url = f"{api_url}/submit"
41
+
42
+ # 1. Instantiate Agent ( modify this part to create your agent)
43
+ try:
44
+ agent = BasicAgent()
45
+ except Exception as e:
46
+ print(f"Error instantiating agent: {e}")
47
+ return f"Error initializing agent: {e}", None
48
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
49
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
50
+ print(agent_code)
51
+
52
+ # 2. Fetch Questions
53
+ print(f"Fetching questions from: {questions_url}")
54
+ try:
55
+ response = requests.get(questions_url, timeout=15)
56
+ response.raise_for_status()
57
+ questions_data = response.json()
58
+ if not questions_data:
59
+ print("Fetched questions list is empty.")
60
+ return "Fetched questions list is empty or invalid format.", None
61
+ print(f"Fetched {len(questions_data)} questions.")
62
+ except requests.exceptions.RequestException as e:
63
+ print(f"Error fetching questions: {e}")
64
+ return f"Error fetching questions: {e}", None
65
+ except requests.exceptions.JSONDecodeError as e:
66
+ print(f"Error decoding JSON response from questions endpoint: {e}")
67
+ print(f"Response text: {response.text[:500]}")
68
+ return f"Error decoding server response for questions: {e}", None
69
+ except Exception as e:
70
+ print(f"An unexpected error occurred fetching questions: {e}")
71
+ return f"An unexpected error occurred fetching questions: {e}", None
72
+
73
+ # 3. Run your Agent
74
+ results_log = []
75
+ answers_payload = []
76
+ print(f"Running agent on {len(questions_data)} questions...")
77
+ for item in questions_data:
78
+ task_id = item.get("task_id")
79
+ question_text = item.get("question")
80
+ if not task_id or question_text is None:
81
+ print(f"Skipping item with missing task_id or question: {item}")
82
+ continue
83
+ try:
84
+ submitted_answer = agent(question_text)
85
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
86
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
87
+ except Exception as e:
88
+ print(f"Error running agent on task {task_id}: {e}")
89
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
90
+
91
+ if not answers_payload:
92
+ print("Agent did not produce any answers to submit.")
93
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
94
+
95
+ # 4. Prepare Submission
96
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
97
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
98
+ print(status_update)
99
+
100
+ # 5. Submit
101
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
102
+ try:
103
+ response = requests.post(submit_url, json=submission_data, timeout=60)
104
+ response.raise_for_status()
105
+ result_data = response.json()
106
+ final_status = (
107
+ f"Submission Successful!\n"
108
+ f"User: {result_data.get('username')}\n"
109
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
110
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
111
+ f"Message: {result_data.get('message', 'No message received.')}"
112
+ )
113
+ print("Submission successful.")
114
+ results_df = pd.DataFrame(results_log)
115
+ return final_status, results_df
116
+ except requests.exceptions.HTTPError as e:
117
+ error_detail = f"Server responded with status {e.response.status_code}."
118
+ try:
119
+ error_json = e.response.json()
120
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
121
+ except requests.exceptions.JSONDecodeError:
122
+ error_detail += f" Response: {e.response.text[:500]}"
123
+ status_message = f"Submission Failed: {error_detail}"
124
+ print(status_message)
125
+ results_df = pd.DataFrame(results_log)
126
+ return status_message, results_df
127
+ except requests.exceptions.Timeout:
128
+ status_message = "Submission Failed: The request timed out."
129
+ print(status_message)
130
+ results_df = pd.DataFrame(results_log)
131
+ return status_message, results_df
132
+ except requests.exceptions.RequestException as e:
133
+ status_message = f"Submission Failed: Network error - {e}"
134
+ print(status_message)
135
+ results_df = pd.DataFrame(results_log)
136
+ return status_message, results_df
137
+ except Exception as e:
138
+ status_message = f"An unexpected error occurred during submission: {e}"
139
+ print(status_message)
140
+ results_df = pd.DataFrame(results_log)
141
+ return status_message, results_df
142
+
143
+
144
+ # --- Build Gradio Interface using Blocks ---
145
+ with gr.Blocks() as demo:
146
+ gr.Markdown("# Basic Agent Evaluation Runner")
147
+ gr.Markdown(
148
+ """
149
+ **Instructions:**
150
+
151
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
152
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
153
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
154
+
155
+ ---
156
+ **Disclaimers:**
157
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
158
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
159
+ """
160
+ )
161
+
162
+ gr.LoginButton()
163
+
164
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
165
+
166
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
167
+ # Removed max_rows=10 from DataFrame constructor
168
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
169
+
170
+ run_button.click(
171
+ fn=run_and_submit_all,
172
+ outputs=[status_output, results_table]
173
+ )
174
+
175
+ if __name__ == "__main__":
176
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
177
+ # Check for SPACE_HOST and SPACE_ID at startup for information
178
+ space_host_startup = os.getenv("SPACE_HOST")
179
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
180
+
181
+ if space_host_startup:
182
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
183
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
184
+ else:
185
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
186
+
187
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
188
+ print(f"✅ SPACE_ID found: {space_id_startup}")
189
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
190
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
191
+ else:
192
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
193
+
194
+ print("-"*(60 + len(" App Starting ")) + "\n")
195
+
196
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
197
+ demo.launch(debug=True, share=False)