Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -3,18 +3,101 @@ import requests
|
|
3 |
import urllib.parse
|
4 |
from bs4 import BeautifulSoup
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
class DuckDuckGoAgent:
|
7 |
def __init__(self):
|
8 |
print("DuckDuckGoAgent initialized.")
|
9 |
-
self.headers = {
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def get_duckduckgo_answer(self, query: str) -> str:
|
14 |
-
"""
|
15 |
-
Attempt to get an answer from the DuckDuckGo API.
|
16 |
-
If no abstract text is found, fall back to scraping.
|
17 |
-
"""
|
18 |
search_query = urllib.parse.quote(query)
|
19 |
url = f"https://api.duckduckgo.com/?q={search_query}&format=json&no_html=1&skip_disambig=1"
|
20 |
|
@@ -22,23 +105,15 @@ class DuckDuckGoAgent:
|
|
22 |
response = requests.get(url, timeout=10)
|
23 |
if response.status_code == 200:
|
24 |
data = response.json()
|
25 |
-
# If AbstractText exists and is non-empty, return it
|
26 |
if 'AbstractText' in data and data['AbstractText']:
|
27 |
return data['AbstractText'][:200]
|
28 |
-
else:
|
29 |
-
print("No abstract found, falling back to scraping.")
|
30 |
-
return self.scrape_duckduckgo(query)
|
31 |
-
else:
|
32 |
-
print(f"DuckDuckGo API failed with status: {response.status_code}")
|
33 |
return self.scrape_duckduckgo(query)
|
|
|
34 |
except Exception as e:
|
35 |
-
print(f"Error
|
36 |
return self.scrape_duckduckgo(query)
|
37 |
|
38 |
def scrape_duckduckgo(self, query: str) -> str:
|
39 |
-
"""
|
40 |
-
Fallback to scraping DuckDuckGo search results if API fails or no abstract found.
|
41 |
-
"""
|
42 |
print("Using fallback: scraping HTML results.")
|
43 |
try:
|
44 |
response = requests.post(
|
@@ -53,55 +128,12 @@ class DuckDuckGoAgent:
|
|
53 |
text = s.get_text().strip()
|
54 |
if text:
|
55 |
return text[:200]
|
56 |
-
|
57 |
-
return self.call_huggingface_llm(query)
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Error scraping DuckDuckGo: {e}")
|
60 |
-
return self.call_huggingface_llm(query)
|
61 |
-
|
62 |
-
def call_huggingface_llm(self, prompt: str) -> str:
|
63 |
-
"""
|
64 |
-
Fallback to Hugging Face LLM if DuckDuckGo API and scraping both fail.
|
65 |
-
"""
|
66 |
-
hf_api_key = os.getenv("HF_API_TOKEN")
|
67 |
-
model = "mistralai/Mistral-7B-Instruct-v0.1"
|
68 |
-
|
69 |
-
if not hf_api_key:
|
70 |
-
return "Error: Hugging Face API Token is not configured."
|
71 |
-
|
72 |
-
url = f"https://api-inference.huggingface.co/models/{model}"
|
73 |
-
headers = {
|
74 |
-
"Authorization": f"Bearer {hf_api_key}",
|
75 |
-
"Content-Type": "application/json"
|
76 |
-
}
|
77 |
-
|
78 |
-
payload = {
|
79 |
-
"inputs": prompt,
|
80 |
-
"parameters": {
|
81 |
-
"max_new_tokens": 200,
|
82 |
-
"temperature": 0.7
|
83 |
-
}
|
84 |
-
}
|
85 |
-
|
86 |
-
try:
|
87 |
-
response = requests.post(url, headers=headers, json=payload, timeout=30)
|
88 |
-
response.raise_for_status()
|
89 |
-
output = response.json()
|
90 |
-
if isinstance(output, list) and "generated_text" in output[0]:
|
91 |
-
return output[0]["generated_text"].strip()[:200]
|
92 |
-
elif isinstance(output, dict) and "error" in output:
|
93 |
-
return f"HF LLM error: {output['error']}"
|
94 |
-
else:
|
95 |
-
return "No response generated from Hugging Face LLM."
|
96 |
except Exception as e:
|
97 |
-
print(f"
|
98 |
-
return
|
99 |
|
100 |
def __call__(self, question: str) -> str:
|
101 |
-
"""
|
102 |
-
Main entry point for the agent to process a question.
|
103 |
-
It will first attempt DuckDuckGo, then fall back to scraping or Hugging Face LLM.
|
104 |
-
"""
|
105 |
print(f"Agent received question: {question[:50]}...")
|
106 |
answer = self.get_duckduckgo_answer(question)
|
107 |
print(f"Agent returning answer: {answer}")
|
|
|
3 |
import urllib.parse
|
4 |
from bs4 import BeautifulSoup
|
5 |
|
6 |
+
class BaseModel:
|
7 |
+
def answer(self, prompt: str) -> str:
|
8 |
+
raise NotImplementedError("Model must implement the answer method.")
|
9 |
+
|
10 |
+
class HfApiModel(BaseModel):
|
11 |
+
def __init__(self, model_name: str, api_token: str):
|
12 |
+
self.model_name = model_name
|
13 |
+
self.api_token = api_token
|
14 |
+
|
15 |
+
def answer(self, prompt: str) -> str:
|
16 |
+
url = f"https://api-inference.huggingface.co/models/{self.model_name}"
|
17 |
+
headers = {
|
18 |
+
"Authorization": f"Bearer {self.api_token}",
|
19 |
+
"Content-Type": "application/json"
|
20 |
+
}
|
21 |
+
payload = {
|
22 |
+
"inputs": prompt,
|
23 |
+
"parameters": {
|
24 |
+
"max_new_tokens": 200,
|
25 |
+
"temperature": 0.0
|
26 |
+
}
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
response = requests.post(url, headers=headers, json=payload, timeout=30)
|
31 |
+
response.raise_for_status()
|
32 |
+
output = response.json()
|
33 |
+
if isinstance(output, list) and "generated_text" in output[0]:
|
34 |
+
return output[0]["generated_text"].strip()[:200]
|
35 |
+
return "No response generated."
|
36 |
+
except Exception as e:
|
37 |
+
return f"Error from Hugging Face API: {e}"
|
38 |
+
|
39 |
+
class LiteLLMModel(BaseModel):
|
40 |
+
def __init__(self, endpoint_url: str):
|
41 |
+
self.url = endpoint_url
|
42 |
+
|
43 |
+
def answer(self, prompt: str) -> str:
|
44 |
+
try:
|
45 |
+
response = requests.post(self.url, json={"input": prompt}, timeout=30)
|
46 |
+
response.raise_for_status()
|
47 |
+
return response.json().get("output", "No output.")
|
48 |
+
except Exception as e:
|
49 |
+
return f"LiteLLM error: {e}"
|
50 |
+
|
51 |
+
class OpenAIServerModel(BaseModel):
|
52 |
+
def __init__(self, api_key: str, model: str = "gpt-3.5-turbo"):
|
53 |
+
self.api_key = api_key
|
54 |
+
self.model = model
|
55 |
+
|
56 |
+
def answer(self, prompt: str) -> str:
|
57 |
+
try:
|
58 |
+
response = requests.post(
|
59 |
+
"https://api.openai.com/v1/chat/completions",
|
60 |
+
headers={
|
61 |
+
"Authorization": f"Bearer {self.api_key}",
|
62 |
+
"Content-Type": "application/json"
|
63 |
+
},
|
64 |
+
json={
|
65 |
+
"model": self.model,
|
66 |
+
"messages": [{"role": "user", "content": prompt}],
|
67 |
+
"max_tokens": 200,
|
68 |
+
"temperature": 0.0
|
69 |
+
},
|
70 |
+
timeout=30
|
71 |
+
)
|
72 |
+
response.raise_for_status()
|
73 |
+
data = response.json()
|
74 |
+
return data["choices"][0]["message"]["content"].strip()[:200]
|
75 |
+
except Exception as e:
|
76 |
+
return f"OpenAI error: {e}"
|
77 |
+
|
78 |
class DuckDuckGoAgent:
|
79 |
def __init__(self):
|
80 |
print("DuckDuckGoAgent initialized.")
|
81 |
+
self.headers = {"User-Agent": "Mozilla/5.0"}
|
82 |
+
self.hf_api_key = os.getenv("HF_API_TOKEN")
|
83 |
+
self.model_type = os.getenv("MODEL_TYPE", "huggingface")
|
84 |
+
self.model_name = os.getenv("MODEL_NAME", "mistralai/Mistral-7B-Instruct-v0.1")
|
85 |
+
self.model_url = os.getenv("MODEL_URL") # For LiteLLM
|
86 |
+
self.openai_key = os.getenv("OPENAI_API_KEY")
|
87 |
+
|
88 |
+
self.llm = self._init_model()
|
89 |
+
|
90 |
+
def _init_model(self) -> BaseModel:
|
91 |
+
if self.model_type == "openai" and self.openai_key:
|
92 |
+
return OpenAIServerModel(api_key=self.openai_key)
|
93 |
+
elif self.model_type == "litellm" and self.model_url:
|
94 |
+
return LiteLLMModel(endpoint_url=self.model_url)
|
95 |
+
elif self.model_type == "huggingface" and self.hf_api_key:
|
96 |
+
return HfApiModel(model_name=self.model_name, api_token=self.hf_api_key)
|
97 |
+
else:
|
98 |
+
raise ValueError("No valid model configuration found.")
|
99 |
|
100 |
def get_duckduckgo_answer(self, query: str) -> str:
|
|
|
|
|
|
|
|
|
101 |
search_query = urllib.parse.quote(query)
|
102 |
url = f"https://api.duckduckgo.com/?q={search_query}&format=json&no_html=1&skip_disambig=1"
|
103 |
|
|
|
105 |
response = requests.get(url, timeout=10)
|
106 |
if response.status_code == 200:
|
107 |
data = response.json()
|
|
|
108 |
if 'AbstractText' in data and data['AbstractText']:
|
109 |
return data['AbstractText'][:200]
|
|
|
|
|
|
|
|
|
|
|
110 |
return self.scrape_duckduckgo(query)
|
111 |
+
return self.scrape_duckduckgo(query)
|
112 |
except Exception as e:
|
113 |
+
print(f"Error with DuckDuckGo API: {e}")
|
114 |
return self.scrape_duckduckgo(query)
|
115 |
|
116 |
def scrape_duckduckgo(self, query: str) -> str:
|
|
|
|
|
|
|
117 |
print("Using fallback: scraping HTML results.")
|
118 |
try:
|
119 |
response = requests.post(
|
|
|
128 |
text = s.get_text().strip()
|
129 |
if text:
|
130 |
return text[:200]
|
131 |
+
return self.llm.answer(query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
except Exception as e:
|
133 |
+
print(f"Scraping error: {e}")
|
134 |
+
return self.llm.answer(query)
|
135 |
|
136 |
def __call__(self, question: str) -> str:
|
|
|
|
|
|
|
|
|
137 |
print(f"Agent received question: {question[:50]}...")
|
138 |
answer = self.get_duckduckgo_answer(question)
|
139 |
print(f"Agent returning answer: {answer}")
|