from smolagents import CodeAgent, LiteLLMModel, GoogleSearchTool, WikipediaSearchTool, Tool, VisitWebpageTool, HfApiModel import os import json import requests import pandas as pd from huggingface_hub import InferenceClient class GetFileTool(Tool): name = "get_file_tool" description = "This tool allows to download the file attached to the question" output_type = "string" inputs = { "task_id": { "type": "string", "description": "The task id of the question", }, "file_name": { "type": "string", "description": "The name of the file to download" } } def forward(self, task_id: str, file_name: str) -> str: # Download the file from the task id file = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}" # Save the file with the file name with open(file_name, "wb") as f: f.write(requests.get(file).content) # Return the file name return os.path.abspath(file_name) class LoadXlsxFileTool(Tool): name = "load_xlsx_file_tool" description = """This tool loads xlsx file into pandas and returns it""" inputs = { "file_path": {"type": "string", "description": "File path"} } output_type = "object" def forward(self, file_path: str) -> object: return pd.read_excel(file_path) class LoadTextFileTool(Tool): name = "load_text_file_tool" description = """This tool loads any text file""" inputs = { "file_path": {"type": "string", "description": "File path"} } output_type = "string" def forward(self, file_path: str) -> object: with open(file_path, 'r', encoding='utf-8') as file: return file.read() class AudioToTextTool(Tool): name = "audio_to_text_tool" description = """This tool transcribes audio files into text""" inputs = { "file_path": {"type": "string", "description": "File path"} } output_type = "string" def forward(self, file_path: str) -> str: try: # Check if file exists if not os.path.exists(file_path): return f"Error: File {file_path} does not exist" # Read the audio file as raw bytes with open(file_path, "rb") as f: audio_data = f.read() # Set up the API URL and headers api_url = "https://router.huggingface.co/hf-inference/models/openai/whisper-large-v3-turbo" headers = { "Authorization": f"Bearer {os.getenv('HF_TOKEN')}", "Content-Type": "audio/mpeg" # Assuming MP3 format } # Make the API request response = requests.post(api_url, headers=headers, data=audio_data) response.raise_for_status() # Raise an exception for bad status codes # Parse and return the response output = response.json() return output["text"] except Exception as e: return f"Error transcribing audio: {str(e)}" class ImageAnalysisTool(Tool): name = "image_analysis_tool" description = """This tool analyzes images and returns the text and the information in the image""" inputs = { "task_id": {"type": "string", "description": "The task id of the question"}, } output_type = "string" def forward(self, task_id: str) -> str: client = InferenceClient( provider="nebius", api_key=os.getenv("HF_TOKEN"), ) completion = client.chat.completions.create( model="google/gemma-3-27b-it", messages=[ { "role": "user", "content": [ { "type": "text", "text": "Describe this image in markdown format" }, { "type": "image_url", "image_url": { "url": f"https://agents-course-unit4-scoring.hf.space/files/{task_id}" } } ] } ], ) return completion.choices[0].message.content def final_answer_formatting(answer, question): model = LiteLLMModel( model_id="gemini/gemini-2.0-flash", api_key=os.getenv("GOOGLE_API_KEY"), ) prompt = f""" You are an AI assistant specialized in the GAIA benchmark. For the question provided, generate the answer in the exact format requested by the question. Do not include any other text or creative additions. Question: {question} Answer: {answer} """ messages = [ {"role": "user", "content": [{"type": "text", "text": prompt}]} ] output = model(messages).content return output web_agent = CodeAgent( model=LiteLLMModel( model_id="gemini/gemini-2.0-flash", api_key=os.getenv("GOOGLE_API_KEY"), ), tools=[ WikipediaSearchTool(), GoogleSearchTool(provider="serper"), VisitWebpageTool() ], add_base_tools=False, additional_authorized_imports=[ "os", "requests", "inspect", "pandas", "datetime", "re", "bs4", "markdownify" ], max_steps=10, name="web_agent", description="This agent is used to search the web for information" ) audio_agent = CodeAgent( model=LiteLLMModel( model_id="gemini/gemini-2.0-flash", api_key=os.getenv("GOOGLE_API_KEY"), ), tools=[AudioToTextTool()], add_base_tools=False, max_steps=10, name="audio_agent", description="This agent is used to analyze and transcribe audio files" ) manager_agent = CodeAgent( name="manager_agent", model=LiteLLMModel( model_id="gemini/gemini-2.5-flash-preview-04-17", api_key=os.getenv("GOOGLE_API_KEY"), ), tools=[GetFileTool(), LoadXlsxFileTool(), LoadTextFileTool(), ImageAnalysisTool()], managed_agents=[web_agent, audio_agent], additional_authorized_imports=[ "pandas" ], planning_interval=5, verbosity_level=1, max_steps=10, )