# Based on EVA, BEIT, timm and DeiT code bases # https://github.com/baaivision/EVA # https://github.com/rwightman/pytorch-image-models/tree/master/timm # https://github.com/microsoft/unilm/tree/master/beit # https://github.com/facebookresearch/deit/ # https://github.com/facebookresearch/dino # --------------------------------------------------------' # not tested yet import math from transformers import CLIPImageProcessor import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import drop_path, to_2tuple, trunc_normal_ from .eva_clip import create_model_and_transforms, get_model_config import torch import torchvision import time # from llava.utils import print class EvaViTWrapper(nn.Module): def __init__(self, vision_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_tower_name = vision_tower self.pretrained = args.vision_tower_pretrained self.args = args self.select_layer = args.mm_vision_select_layer if self.select_layer < -1: self.select_layer += 1 self.select_feature = getattr(args, "mm_vision_select_feature", "patch") self.model_config = get_model_config(self.vision_tower_name) if not delay_load: print(f"Loading vision tower: {vision_tower}") self.load_model() elif getattr(args, "unfreeze_mm_vision_tower", False): # TODO: better detector is needed. print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.") self.load_model() elif hasattr(args, "mm_tunable_parts") and "mm_vision_tower" in args.mm_tunable_parts: print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.") self.load_model() def load_model(self): print(f"Loading: {self.vision_tower_name}") print(f"Pretrained: {self.pretrained}") time_start = time.time() model, _, image_processor = create_model_and_transforms(self.vision_tower_name, self.pretrained, force_custom_clip=True, precision="fp16") time_end = time.time() print(f"Loaded: {self.vision_tower_name} in {time_end - time_start:.2f}s") self.device = next(model.parameters()).device self.dtype = next(model.parameters()).dtype if self.device.type != "meta": model = model.to("cuda") self.vision_tower = model.visual resize_transform = [t for t in image_processor.transforms if isinstance(t, torchvision.transforms.Resize)][0] normalize_transform = [t for t in image_processor.transforms if isinstance(t, torchvision.transforms.Normalize)][0] self.resize_transform_size = resize_transform.size self.image_processor = CLIPImageProcessor.from_pretrained( "openai/clip-vit-large-patch14", crop_size=resize_transform.size, size={"shortest_edge": resize_transform.size}, image_mean=list(normalize_transform.mean), image_std=list(normalize_transform.std), ) print(f"Loaded image processor: {self.image_processor}") self.vision_tower.requires_grad_(False) self.is_loaded = True def feature_select(self, image_features): select_feature_type = self.select_feature # if self.select_feature in ["slicefour_patch", "slicefour_cls_patch"]: # select_every_k_layer = len(image_features) // 4 # image_features = torch.cat([image_features[i] for i in range(select_every_k_layer + self.select_layer, len(image_features), select_every_k_layer)], dim=-1) # select_feature_type = select_feature_type.replace("slicefour_", "") # elif self.select_feature in ["slice_m25811_f6_patch", "slice_m25811_f6_cls_patch"]: # select_layers = [-1, -4, -7, -10, 6] # image_features = torch.cat([image_features[i] for i in select_layers], dim=-1) # select_feature_type = select_feature_type.replace("slice_m25811_f6_", "") # else: # image_features = image_features[self.select_layer] if select_feature_type == "patch": image_features = image_features[:, 1:] elif select_feature_type == "cls_patch": image_features = image_features else: raise ValueError(f"Unexpected select feature: {select_feature_type}") return image_features def train(self, mode=True): self.training = mode if self.is_loaded: self.vision_tower.eval() def forward(self, images): if type(images) is list: image_features = [] for image in images: image_features = self.vision_tower.forward_features(image.to(self.dtype), return_all_features=True) image_features = self.feature_select(image_features).to(self.dtype) image_features.append(image_features) else: image_features = self.vision_tower.forward_features(images.to(self.dtype), return_all_features=True) image_features = self.feature_select(image_features).to(self.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def hidden_size(self): return self.model_config["vision_cfg"]["width"] @property def num_patches(self): return (self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"]) ** 2 @property def num_patches_per_side(self): return self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"] @property def config(self): return self.model_config @property def image_size(self): return self.model_config["vision_cfg"]["image_size"]