jiuhai's picture
push
a320e08
# Based on EVA, BEIT, timm and DeiT code bases
# https://github.com/baaivision/EVA
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
# not tested yet
import math
from transformers import CLIPImageProcessor
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
from .eva_clip import create_model_and_transforms, get_model_config
import torch
import torchvision
import time
# from llava.utils import print
class EvaViTWrapper(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.pretrained = args.vision_tower_pretrained
self.args = args
self.select_layer = args.mm_vision_select_layer
if self.select_layer < -1:
self.select_layer += 1
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
self.model_config = get_model_config(self.vision_tower_name)
if not delay_load:
print(f"Loading vision tower: {vision_tower}")
self.load_model()
elif getattr(args, "unfreeze_mm_vision_tower", False):
# TODO: better detector is needed.
print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
self.load_model()
elif hasattr(args, "mm_tunable_parts") and "mm_vision_tower" in args.mm_tunable_parts:
print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
self.load_model()
def load_model(self):
print(f"Loading: {self.vision_tower_name}")
print(f"Pretrained: {self.pretrained}")
time_start = time.time()
model, _, image_processor = create_model_and_transforms(self.vision_tower_name, self.pretrained, force_custom_clip=True, precision="fp16")
time_end = time.time()
print(f"Loaded: {self.vision_tower_name} in {time_end - time_start:.2f}s")
self.device = next(model.parameters()).device
self.dtype = next(model.parameters()).dtype
if self.device.type != "meta":
model = model.to("cuda")
self.vision_tower = model.visual
resize_transform = [t for t in image_processor.transforms if isinstance(t, torchvision.transforms.Resize)][0]
normalize_transform = [t for t in image_processor.transforms if isinstance(t, torchvision.transforms.Normalize)][0]
self.resize_transform_size = resize_transform.size
self.image_processor = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-large-patch14",
crop_size=resize_transform.size,
size={"shortest_edge": resize_transform.size},
image_mean=list(normalize_transform.mean),
image_std=list(normalize_transform.std),
)
print(f"Loaded image processor: {self.image_processor}")
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_features):
select_feature_type = self.select_feature
# if self.select_feature in ["slicefour_patch", "slicefour_cls_patch"]:
# select_every_k_layer = len(image_features) // 4
# image_features = torch.cat([image_features[i] for i in range(select_every_k_layer + self.select_layer, len(image_features), select_every_k_layer)], dim=-1)
# select_feature_type = select_feature_type.replace("slicefour_", "")
# elif self.select_feature in ["slice_m25811_f6_patch", "slice_m25811_f6_cls_patch"]:
# select_layers = [-1, -4, -7, -10, 6]
# image_features = torch.cat([image_features[i] for i in select_layers], dim=-1)
# select_feature_type = select_feature_type.replace("slice_m25811_f6_", "")
# else:
# image_features = image_features[self.select_layer]
if select_feature_type == "patch":
image_features = image_features[:, 1:]
elif select_feature_type == "cls_patch":
image_features = image_features
else:
raise ValueError(f"Unexpected select feature: {select_feature_type}")
return image_features
def train(self, mode=True):
self.training = mode
if self.is_loaded:
self.vision_tower.eval()
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_features = self.vision_tower.forward_features(image.to(self.dtype), return_all_features=True)
image_features = self.feature_select(image_features).to(self.dtype)
image_features.append(image_features)
else:
image_features = self.vision_tower.forward_features(images.to(self.dtype), return_all_features=True)
image_features = self.feature_select(image_features).to(self.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def hidden_size(self):
return self.model_config["vision_cfg"]["width"]
@property
def num_patches(self):
return (self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"]) ** 2
@property
def num_patches_per_side(self):
return self.model_config["vision_cfg"]["image_size"] // self.model_config["vision_cfg"]["patch_size"]
@property
def config(self):
return self.model_config
@property
def image_size(self):
return self.model_config["vision_cfg"]["image_size"]