from PIL import Image, ImageDraw, ImageFont from skimage.measure import label, regionprops import gradio as gr import tensorflow as tf import numpy as np from PIL import Image from tensorflow.keras.preprocessing.image import array_to_img import json import os from transformers import AutoModel from transformers import TFSegformerForSemanticSegmentation import matplotlib.pyplot as plt import matplotlib import matplotlib.font_manager as fm from sklearn.cluster import KMeans from skimage import color import io import pandas as pd # Set the font to support Chinese characters #font_path = 'simhei.ttf' #font_prop = fm.FontProperties(fname=font_path) #matplotlib.rcParams['font.family'] = font_prop.get_name() #matplotlib.rcParams['font.family'] = 'Droid Sans Fallback' id2color= {1: [209, 35, 69], 2: [216, 208, 246], 3: [172, 196, 170], 4: [178, 80, 80], 6: [89, 89, 89], 7: [160, 146, 229], 8: [18, 17, 20], 10: [190, 209, 189], 13: [37, 12, 156], 15: [250, 50, 83], 16: [61, 245, 61], 17: [230, 203, 104], 18: [125, 104, 227], 19: [228, 225, 249], 20: [51, 221, 255], 21: [95, 95, 95], 23: [156, 239, 255], 24: [153, 102, 51], 26: [0, 0, 226], 27: [254, 242, 208], 29: [89, 134, 179], 32: [255, 0, 204], 33: [170, 240, 209], 34: [140, 120, 240], 35: [118, 255, 166], 36: [250, 250, 55], 37: [243, 232, 208], 38: [1, 118, 141], 39: [243, 241, 255], 41: [158, 108, 4], 43: [132, 0, 0], 44: [245, 147, 49], 46: [240, 120, 240], 47: [149, 83, 203], 48: [52, 209, 183], 49: [200, 101, 0], 50: [65, 112, 192], 52: [255, 204, 51], 53: [36, 179, 83], 56: [90, 98, 89], 57: [255, 191, 0], 58: [204, 153, 51], 59: [31, 73, 125], 60: [155, 149, 205], 61: [154, 150, 169], 62: [128, 128, 128], 63: [163, 160, 172], 64: [255, 106, 77], 65: [115, 51, 128], 0: [10, 9, 10]} id2label= {1: '动物皮', 2: '骨/牙/角', 3: '砖块', 4: '纸板/纸', 6: '天花板瓦片', 7: '瓷', 8: '黑板', 10: '混凝土', 13: '织物/布/地毯', 15: '火', 16: '树叶', 17: '食物', 18: '毛皮', 19: '宝石/石英', 20: '玻璃', 21: '毛发', 23: '冰', 24: '皮革', 26: '金属', 27: '镜子', 29: '油漆/抹灰/石膏', 32: '照片/绘画/布面招牌', 33: '透明塑料', 34: '非透明塑料', 35: '橡胶/乳胶', 36: '沙', 37: '皮肤/嘴唇', 38: '天空', 39: '雪', 41: '土壤/泥土', 43: '天然石材', 44: '抛光石材', 46: '片状地砖/石地砖/瓷地砖', 47: '壁纸', 48: '水', 49: '蜡', 50: '白板', 52: '木材', 53: '树木', 56: '沥青', 57: '珐琅/琉璃', 58: '夯土', 59: '塑钢复合装饰板', 60: '水泥', 61: '陶', 62: '屋顶防水卷材', 63: '金属网窗(远景)', 64: '砖雕', 65: '纱窗', 0: '背景/未知'} id2material={1: 'Animal skin', 2: 'Bone/teeth/horn', 3: 'Brickwork', 4: 'Cardboard/Paper', 6: 'Ceiling tile', 7: 'Ceramic', 8: 'Chalkboard/blackboard', 10: 'Concrete', 13: 'Fabric/cloth', 15: 'Fire', 16: 'Foliage', 17: 'Food', 18: 'Fur', 19: 'Gemstone/quartz', 20: 'Glass', 21: 'Hair', 23: 'Ice', 24: 'Leather', 26: 'Metal', 27: 'Mirror', 29: 'Paint/plaster', 32: 'Photograph/painting', 33: 'Plastic, clear', 34: 'Plastic, non-clear', 35: 'Rubber/latex', 36: 'Sand', 37: 'Skin/lips', 38: 'Sky', 39: 'Snow', 41: 'Soil/mud', 43: 'natural stone', 44: 'polished stone & engineered stone', 46: 'Tile', 47: 'Wallpaper', 48: 'Water', 49: 'Wax', 50: 'Whiteboard', 52: 'Wood', 53: 'tree', 56: 'Asphalt', 57: 'enamel', 58: 'Rammed earth', 59: 'composite decorative board', 60: 'Cement', 61: 'Pottery', 62: 'Roofing waterproof material', 63: 'Metal mesh window (perspective)', 64: 'carved brick', 65: 'window screen', 0: 'background'} model_save_path ='jinfengxie/BFM_segformer0821' model = TFSegformerForSemanticSegmentation.from_pretrained(model_save_path) def predict_and_visualize(image): #image = Image.open(image_path) image_np = np.array(image) height,width,_=image_np.shape maxhl=max(height,width) image = tf.convert_to_tensor(image_np, dtype=tf.float32) if maxhl>1500: if maxhl==height: image=tf.image.resize(image,(1500,int(1500*width/height))) if maxhl==width: image=tf.image.resize(image,(int(1500*height/width),1500)) #image = tf.image.resize_with_pad(image, 1500, 1500) image = tf.cast(image, tf.float32) / 255.0 image = tf.transpose(image, perm=[2, 0, 1]) images= tf.expand_dims(image, axis=0) # 进行预测 preds = model.predict(images).logits pred_mask = tf.argmax(preds, axis=1) pred_mask = tf.expand_dims(pred_mask, axis=-1) pred_mask = pred_mask[0] # 取出批处理的第一个结果 pred_mask=tf.image.resize(pred_mask,(height,width),method='nearest') pred_mask=tf.squeeze(pred_mask) print(pred_mask.shape) #pred_mask = pred_mask[:,:,0] .numpy() # 取出批处理的第一个结果 #print(pred_mask.shape) unique, counts = np.unique(pred_mask, return_counts=True) counts_dict = dict(zip(unique, counts)) # 转换预测掩码为颜色图像 color_mask = np.zeros((height,width, 3)) label_positions = {} for key, value in id2color.items(): #print("mask shape",mask.shape) color_mask[pred_mask == key] = np.array(value) # 颜色值需要被标准化到[0,1] indices = np.where(pred_mask == key) if indices[0].size > 0: # 计算标签的位置为当前类别像素的中心点 label_positions[key] = (np.mean(indices[1]), np.mean(indices[0])) color_mask = color_mask.astype(np.uint8) result_image = Image.fromarray(color_mask) draw = ImageDraw.Draw(result_image) font = ImageFont.truetype("arial.ttf", int(height/30)) # 尝试加载Arial字体,大小为12 for key, position in label_positions.items(): if key in id2label: # 绘制文本,您可能需要调整文本位置和字体大小 material=id2material[key] draw.text((position[0], position[1]), str(material), font=font, fill='white') return pred_mask,result_image,counts_dict def ext_colors(image_path,mask,n_clusters=4): #image = Image.open(image_path) # 将图像和掩码转换为numpy数组 image_np = np.array(image_path) mask_np = np.array(mask) # 获取掩码中的唯一类别 unique_classes = np.unique(mask_np) # 为每个类别提取颜色 colors_per_class = {} for cls in unique_classes: # 提取当前类别的像素点 indices = np.where(mask_np == cls) #print(indices) pixels = image_np[indices] # 使用K-means聚类来找到主要颜色 kmeans = KMeans(n_clusters=n_clusters,n_init=10) kmeans.fit(pixels) dominant_colors = kmeans.cluster_centers_ # 将颜色存储为整数值 dominant_colors = dominant_colors.astype(int) # 保存颜色 colors_per_class[cls] = dominant_colors return colors_per_class def plot_material_color_palette_grid(material_dict, materials_per_row=4): # Calculate total number of color rows and header rows needed total_rows = sum((len(colors) + 1) for colors in material_dict.values()) # +1 for the header row per material num_materials = len(material_dict) grid_rows = (num_materials + materials_per_row - 1) // materials_per_row total_grid_rows = 0 for i in range(grid_rows): row_materials = list(material_dict.keys())[i * materials_per_row:(i + 1) * materials_per_row] row_height = max(len(material_dict[mat]) for mat in row_materials if mat in material_dict) + 1 total_grid_rows += row_height # Set dimensions and spacing block_width = 1 block_height = 0.5 text_gap = 0.2 row_gap = 0.2 column_gap = 1.5 # Gap between material columns within the same row # Calculate figure width and height dynamically fig_width = materials_per_row * (block_width + text_gap + column_gap) fig_height = total_grid_rows * (block_height + row_gap) # Create a figure and a set of subplots fig, ax = plt.subplots(figsize=(fig_width, fig_height)) # Set the title of the figure #ax.set_title('Material Color Palette Grid') # Remove axes ax.axis('off') # Reverse the Y-axis to top-align the origin ax.invert_yaxis() current_row = 0 # Tracker for the current row position in the grid for i in range(grid_rows): row_materials = list(material_dict.keys())[i * materials_per_row:(i + 1) * materials_per_row] max_row_height = max(len(material_dict[mat]) for mat in row_materials if mat in material_dict) + 1 for j, material in enumerate(row_materials): if material not in material_dict: continue colors = material_dict[material] # Add a header for each material class ax.text(j * (block_width + text_gap + column_gap), current_row * (block_height + row_gap)+0.5, material, va='center', fontsize=12, fontweight='bold', ha='left') material_row_start = current_row for k, color in enumerate(colors): # Normalize the RGB values to [0, 1] for Matplotlib normalized_color = np.array(color) / 255.0 y_pos = (material_row_start + 1 + k) * (block_height + row_gap) # Draw a rectangle for each color ax.add_patch(plt.Rectangle((j * (block_width + text_gap + column_gap), y_pos), block_width, block_height, color=normalized_color)) # Annotate the RGB values to the right of each color block ax.text(j * (block_width + text_gap + column_gap) + block_width + text_gap, y_pos + block_height / 2, str(color), va='center', fontsize=10) current_row += max_row_height # Adjust plot limits ax.set_xlim(0, fig_width) ax.set_ylim(current_row * (block_height + row_gap), 0) # 保存到内存,而不是显示图像 buf = io.BytesIO() plt.savefig(buf, format='png') plt.close() buf.seek(0) img = Image.open(buf) return img # 将matplotlib图转换为图像 def plt_to_image(): buf = io.BytesIO() plt.savefig(buf, format='png',dpi=300) plt.close() buf.seek(0) img = Image.open(buf) return img def calculate_slice_statistics(one_mask, slice_size=256): """计算每个切片的材质占比""" num_rows, num_cols = one_mask.shape[0] // slice_size, one_mask.shape[1] // slice_size slice_stats = {} for i in range(num_rows): for j in range(num_cols): slice_mask = one_mask[i*slice_size:(i+1)*slice_size, j*slice_size:(j+1)*slice_size] unique, counts = np.unique(slice_mask, return_counts=True) total_pixels = counts.sum() slice_stats[(i, j)] = {k: v / total_pixels for k, v in zip(unique, counts)} return slice_stats def find_top_slices(slice_stats, exclusion_list, min_percent=0.7, min_slices=1, top_k=3): """找出每个类材质占比最高的前三个切片,加入新的筛选条件""" from collections import defaultdict import heapq top_slices = defaultdict(list) for slice_pos, stats in slice_stats.items(): for material_id, percent in stats.items(): # 第一个判断:材质是否在排除列表中 if material_id in exclusion_list: continue # 第二个判断:材质占比是否至少为70% if percent < min_percent: continue # 将符合条件的切片添加到堆中 if len(top_slices[material_id]) < top_k: heapq.heappush(top_slices[material_id], (percent, slice_pos)) else: heapq.heappushpop(top_slices[material_id], (percent, slice_pos)) # 过滤出符合第三个条件的材质 valid_top_slices = {} for material_id, slices in top_slices.items(): if len(slices) > min_slices: # 至少有超过一个切片 valid_top_slices[material_id] = sorted(slices, reverse=True) return valid_top_slices def extract_and_visualize_top_slices(image, top_slices, slice_size=256): fig, axs = plt.subplots(nrows=len(top_slices), ncols=3, figsize=(15, 5 * len(top_slices))) image=Image.fromarray(image) if len(top_slices) == 1: axs = [axs] for idx, (material_id, slices) in enumerate(top_slices.items()): for col, (_, pos) in enumerate(slices): i, j = pos img_slice = image.crop((j * slice_size, i * slice_size, (j + 1) * slice_size, (i + 1) * slice_size)) axs[idx][col].imshow(img_slice) axs[idx][col].set_title(f'Material {id2material[material_id]} - Slice {pos}') axs[idx][col].axis('off') plt.tight_layout() # 保存到内存,而不是显示图像 buf = io.BytesIO() plt.savefig(buf, format='png') plt.close() buf.seek(0) img = Image.open(buf) return img # main program def process_image(image_path): #image = Image.open(image_path) one_mask,color_mask, counts_dict = predict_and_visualize(image_path) colors_per_class=ext_colors(image_path,one_mask,n_clusters=4) colors_per_label = {id2material[key]: value for key, value in colors_per_class.items()} # 定义一个列表,包含需要从字典中删除的键 labels_to_remove = ['Sky', 'background','Glass','tree','water','Plastic, clear'] # 使用字典推导式删除列表中的键 colors_per_label = {key: value for key, value in colors_per_label.items() if key not in labels_to_remove} palette_image = plot_material_color_palette_grid(colors_per_label) # 将结果转化为图片展示 plt.figure(figsize=(5, 5)) plt.imshow(color_mask) plt.tight_layout() plt.axis('off') color_mask_img = plt_to_image() counts_dict2={id2label[key]: value for key, value in counts_dict.items()} counts_df = pd.DataFrame(list(counts_dict2.items()), columns=['类别', '计数']) # 计算总计数 total_count = counts_df['计数'].sum() # 计算每个类别的百分比 counts_df['百分比'] = (counts_df['计数'] / total_count * 100).round(2) # 重新命名 DataFrame 为 percentage_df 以清楚表达其内容 percentage_df = counts_df.rename(columns={'计数': 'pixels', '百分比': 'percentage (%)'}) slice_size = 128 exclusion_list = [38] slice_stats = calculate_slice_statistics(one_mask, slice_size=slice_size) top_slices = find_top_slices(slice_stats, exclusion_list=exclusion_list, min_percent=0.5, min_slices=1) slice_image=extract_and_visualize_top_slices(image_path, top_slices, slice_size=slice_size) return color_mask_img, palette_image, slice_image, percentage_df iface = gr.Interface( fn=process_image, inputs=gr.Image(), outputs=[ gr.Image(type="pil", label="Color Mask"), gr.Image(type="pil", label="Color Palette"), gr.Image(type='pil', label='Texture Slices'), gr.DataFrame() ], title="Building Facade Material Segmentation", description="Upload an image to segment material masks, and get color palettes." ) iface.launch()