File size: 1,308 Bytes
bf50f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import requests
import torch
import torch.nn as nn

import timm

model = timm.create_model("hf_hub:nateraw/resnet18-random", pretrained=True)
model.train()

import os 

def print_bn():
    bn_data = []
    for m in model.modules():
        if(type(m) is nn.BatchNorm2d):
            # print(m.momentum)
            bn_data.extend(m.running_mean.data.numpy().tolist())
            bn_data.extend(m.running_var.data.numpy().tolist())
            bn_data.append(m.momentum)
    return bn_data

def greet(image):
    # url = f'https://huggingface.co/spaces?p=1&sort=modified&search=GPT'
    # html = request_url(url)
    # key = os.getenv("OPENAI_API_KEY")
#     x = torch.ones([1,3,224,224])
    if(image is None):
        bn_data = print_bn()
        return ','.join([f'{x:.10f}' for x in bn_data])
    else:  
        print(type(image))
        image = torch.tensor(image).float()
        print(image.min(), image.max())
        image = image/255.0
        image = image.unsqueeze(0)
        print(image.shape)
        image = torch.permute(image, [0,3,1,2])
        out = model(image)

    # model.train()
    return "Hello world!"



image = gr.inputs.Image(label="Upload a photo for beautify", shape=(224,224))
iface = gr.Interface(fn=greet, inputs=image, outputs="text")
iface.launch()