Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,101 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
from datasets import load_dataset
|
4 |
|
5 |
-
# Initialize
|
|
|
|
|
|
|
6 |
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
7 |
pipe = pipeline("text-generation", model=model_name)
|
8 |
|
9 |
# Load the dataset
|
10 |
ds = load_dataset("refugee-law-lab/canadian-legal-data", "default", split="train")
|
11 |
|
12 |
-
# Streamlit interface
|
13 |
-
st.title("Canadian Legal Text Generator")
|
14 |
-
st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.")
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
if
|
24 |
-
|
25 |
-
# Generate text based on the prompt
|
26 |
-
with st.spinner("Generating response..."):
|
27 |
-
generated_text = pipe(prompt, max_length=100, do_sample=True, temperature=0.7)[0]["generated_text"]
|
28 |
-
st.write("**Generated Text:**")
|
29 |
-
st.write(generated_text)
|
30 |
else:
|
31 |
-
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
import streamlit as st
|
4 |
from transformers import pipeline
|
5 |
from datasets import load_dataset
|
6 |
|
7 |
+
# Initialize the Hugging Face InferenceClient
|
8 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
+
|
10 |
+
# Initialize text-generation pipeline with the model for Streamlit
|
11 |
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
12 |
pipe = pipeline("text-generation", model=model_name)
|
13 |
|
14 |
# Load the dataset
|
15 |
ds = load_dataset("refugee-law-lab/canadian-legal-data", "default", split="train")
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
+
# Gradio Function
|
19 |
+
def respond(
|
20 |
+
message,
|
21 |
+
history: list[tuple[str, str]],
|
22 |
+
system_message,
|
23 |
+
max_tokens,
|
24 |
+
temperature,
|
25 |
+
top_p,
|
26 |
+
):
|
27 |
+
messages = [{"role": "system", "content": system_message}]
|
28 |
+
|
29 |
+
for val in history:
|
30 |
+
if val[0]:
|
31 |
+
messages.append({"role": "user", "content": val[0]})
|
32 |
+
if val[1]:
|
33 |
+
messages.append({"role": "assistant", "content": val[1]})
|
34 |
+
|
35 |
+
messages.append({"role": "user", "content": message})
|
36 |
+
|
37 |
+
response = ""
|
38 |
+
|
39 |
+
for message in client.chat_completion(
|
40 |
+
messages,
|
41 |
+
max_tokens=max_tokens,
|
42 |
+
stream=True,
|
43 |
+
temperature=temperature,
|
44 |
+
top_p=top_p,
|
45 |
+
):
|
46 |
+
token = message.choices[0].delta.content
|
47 |
+
|
48 |
+
response += token
|
49 |
+
yield response
|
50 |
+
|
51 |
+
|
52 |
+
# Gradio interface setup
|
53 |
+
demo = gr.ChatInterface(
|
54 |
+
respond,
|
55 |
+
additional_inputs=[
|
56 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
57 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
58 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
59 |
+
gr.Slider(
|
60 |
+
minimum=0.1,
|
61 |
+
maximum=1.0,
|
62 |
+
value=0.95,
|
63 |
+
step=0.05,
|
64 |
+
label="Top-p (nucleus sampling)",
|
65 |
+
),
|
66 |
+
],
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
# Streamlit interface setup
|
71 |
+
def streamlit_interface():
|
72 |
+
st.title("Canadian Legal Text Generator")
|
73 |
+
st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.")
|
74 |
+
|
75 |
+
# Show dataset sample
|
76 |
+
st.subheader("Sample Data from Canadian Legal Dataset:")
|
77 |
+
st.write(ds[:5]) # Displaying the first 5 rows of the dataset
|
78 |
+
|
79 |
+
# Prompt input
|
80 |
+
prompt = st.text_area("Enter your prompt:", placeholder="Type something...")
|
81 |
+
|
82 |
+
if st.button("Generate Response"):
|
83 |
+
if prompt:
|
84 |
+
# Generate text based on the prompt
|
85 |
+
with st.spinner("Generating response..."):
|
86 |
+
generated_text = pipe(prompt, max_length=100, do_sample=True, temperature=0.7)[0]["generated_text"]
|
87 |
+
st.write("**Generated Text:**")
|
88 |
+
st.write(generated_text)
|
89 |
+
else:
|
90 |
+
st.write("Please enter a prompt to generate a response.")
|
91 |
+
|
92 |
|
93 |
+
# Running Gradio and Streamlit interfaces
|
94 |
+
if __name__ == "__main__":
|
95 |
+
st.sidebar.title("Choose an Interface")
|
96 |
+
interface = st.sidebar.radio("Select", ("Streamlit", "Gradio"))
|
97 |
|
98 |
+
if interface == "Streamlit":
|
99 |
+
streamlit_interface()
|
|
|
|
|
|
|
|
|
|
|
100 |
else:
|
101 |
+
demo.launch()
|