jhansi1 commited on
Commit
c167fb9
·
verified ·
1 Parent(s): 877bd0f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -64
app.py CHANGED
@@ -1,64 +1,31 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from datasets import load_dataset
4
+
5
+ # Initialize text-generation pipeline with the model
6
+ model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
7
+ pipe = pipeline("text-generation", model=model_name)
8
+
9
+ # Load the dataset
10
+ ds = load_dataset("refugee-law-lab/canadian-legal-data", "default", split="train")
11
+
12
+ # Streamlit interface
13
+ st.title("Canadian Legal Text Generator")
14
+ st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.")
15
+
16
+ # Show dataset sample
17
+ st.subheader("Sample Data from Canadian Legal Dataset:")
18
+ st.write(ds[:5]) # Displaying the first 5 rows of the dataset
19
+
20
+ # Prompt input
21
+ prompt = st.text_area("Enter your prompt:", placeholder="Type something...")
22
+
23
+ if st.button("Generate Response"):
24
+ if prompt:
25
+ # Generate text based on the prompt
26
+ with st.spinner("Generating response..."):
27
+ generated_text = pipe(prompt, max_length=100, do_sample=True, temperature=0.7)[0]["generated_text"]
28
+ st.write("**Generated Text:**")
29
+ st.write(generated_text)
30
+ else:
31
+ st.write("Please enter a prompt to generate a response.")