Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,31 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
# Initialize text-generation pipeline with the model
|
6 |
+
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
7 |
+
pipe = pipeline("text-generation", model=model_name)
|
8 |
+
|
9 |
+
# Load the dataset
|
10 |
+
ds = load_dataset("refugee-law-lab/canadian-legal-data", "default", split="train")
|
11 |
+
|
12 |
+
# Streamlit interface
|
13 |
+
st.title("Canadian Legal Text Generator")
|
14 |
+
st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.")
|
15 |
+
|
16 |
+
# Show dataset sample
|
17 |
+
st.subheader("Sample Data from Canadian Legal Dataset:")
|
18 |
+
st.write(ds[:5]) # Displaying the first 5 rows of the dataset
|
19 |
+
|
20 |
+
# Prompt input
|
21 |
+
prompt = st.text_area("Enter your prompt:", placeholder="Type something...")
|
22 |
+
|
23 |
+
if st.button("Generate Response"):
|
24 |
+
if prompt:
|
25 |
+
# Generate text based on the prompt
|
26 |
+
with st.spinner("Generating response..."):
|
27 |
+
generated_text = pipe(prompt, max_length=100, do_sample=True, temperature=0.7)[0]["generated_text"]
|
28 |
+
st.write("**Generated Text:**")
|
29 |
+
st.write(generated_text)
|
30 |
+
else:
|
31 |
+
st.write("Please enter a prompt to generate a response.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|