Spaces:
Runtime error
Runtime error
File size: 3,458 Bytes
d97734e 936b250 d97734e a236161 d97734e afd1fe2 d97734e 936b250 afd1fe2 936b250 d97734e 936b250 d97734e 936b250 63c0903 fa64871 899f27e 011ac7a d97734e 936b250 fa64871 cff9378 d97734e 936b250 d97734e afd1fe2 cff9378 afd1fe2 d97734e afd1fe2 d97734e d3ee676 d97734e cff9378 d3ee676 afd1fe2 d97734e cff9378 936b250 90827dd cff9378 90827dd cff9378 d97734e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import gradio as gr
import spaces
# TOKENIZER =
# MINIMUM_TOKENS = 64
# def count_tokens(text):
# return len(TOKENIZER(text).input_ids)
# Mock function for testing layout
def run_test_power(model_name, real_text, generated_text, N=10):
return f"Prediction: Human (Mocked for {model_name})"
# Change mode name
#def change_mode(mode):
# if mode == "Faster Model":
# .change_mode("t5-small")
# elif mode == "Medium Model":
# .change_mode("roberta-base-openai-detector")
# elif mode == "Powerful Model":
# .change_mode("falcon-rw-1b")
# else:
# gr.Error(f"Invaild mode selected.")
# return mode
css = """
#header { text-align: center; font-size: 1.5em; margin-bottom: 20px; }
#output-text { font-weight: bold; font-size: 1.2em; }
.links {
display: flex;
justify-content: flex-end;
gap: 10px;
margin-right: 10px;
align-items: center;
}
.separator {
margin: 0 5px;
color: black;
}
"""
# Gradio App
with gr.Blocks(css=css) as app:
with gr.Row():
gr.HTML('<div id="header">R-detect On HuggingFace</div>')
with gr.Row():
gr.HTML(
"""
<div class="links">
<a href="https://openreview.net/forum?id=z9j7wctoGV" target="_blank">Paper</a>
<span class="separator">|</span>
<a href="https://github.com/xLearn-AU/R-Detect" target="_blank">Code</a>
<span class="separator">|</span>
<a href="mailto:[email protected]" target="_blank">Contact</a>
</div>
"""
)
with gr.Row():
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter Text Here",
lines=8,
)
output = gr.Textbox(
label="Inference Result",
placeholder="Maked by Human or AI",
elem_id="output-text",
)
with gr.Row():
model_name = gr.Dropdown(
[
"Faster Model",
"Medium Model",
"Powerful Model",
],
label="Select Model",
value="Medium Model",
)
submit_button = gr.Button("Run Detection", variant="primary")
clear_button = gr.Button("Clear", variant="secondary")
submit_button.click(run_test_power, inputs=[model_name, input_text, input_text], outputs=output)
clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])
# model_name.change(change_mode, inputs=[model_name], outputs=[model_name])
with gr.Accordion("Disclaimer", open=False):
gr.Markdown(
"""
- **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
- **Accuracy**: Results may vary based on input length and quality.
"""
)
with gr.Accordion("Citations", open=False):
gr.Markdown(
"""
```
@inproceedings{zhangs2024MMDMP,
title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
booktitle = {International Conference on Learning Representations (ICLR)},
year={2024}
}
```
"""
)
app.launch()
|