File size: 3,191 Bytes
d97734e
 
a236161
d97734e
a236161
d97734e
 
c041572
d97734e
fa64871
 
 
63c0903
fa64871
63c0903
fa64871
899f27e
 
 
011ac7a
d97734e
 
 
 
 
 
fa64871
 
d97734e
fa64871
 
899f27e
fa64871
899f27e
fa64871
 
d97734e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
538aa00
 
 
d97734e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f4c315
d97734e
 
90827dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d97734e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import gradio as gr

# Mock function for testing layout
def run_test_power(model_name, real_text, generated_text, N=10):
    return "Prediction: Human (Mocked)"

css = """
#header { text-align: center; font-size: 2em; margin-bottom: 15px; }
#output-text { font-weight: bold; font-size: 1.2em; }
.links {
    display: flex;
    justify-content: flex-end;
    gap: 10px;
    margin-right: 10px;
    align-items: center;
}
.separator {
    margin: 0 5px;
    color: black;
}
"""

# Gradio App
with gr.Blocks(css=css) as app:
    with gr.Row():
        gr.HTML('<div id="header">Human or AI Text Detector</div>')
    with gr.Row():
        gr.HTML(
            """
            <div class="links">
                <a href="https://openreview.net/forum?id=z9j7wctoGV" target="_blank">Paper</a>
                <span class="separator">|</span>
                <a href="https://github.com/xLearn-AU/R-Detect" target="_blank">Code</a>
                <span class="separator">|</span>
                <a href="mailto:[email protected]" target="_blank">Contact</a>
            </div>
            """
        )
    with gr.Row():
        input_text = gr.Textbox(
            label="Input Text",
            placeholder="Enter the text to check",
            lines=8,
        )
    with gr.Row():
        model_name = gr.Dropdown(
            [
                "gpt2-medium",
                "gpt2-large",
                "t5-large",
                "t5-small",
                "roberta-base",
                "roberta-base-openai-detector",
                "chatgpt-detector-roberta",
                "gpt3-small-finetune-cnndaily-news",
                "gpt-neo-125m",
                "falcon-rw-1b",
            ],
            label="Select Model",
            value="gpt2-medium",
        )
    with gr.Row():
        submit_button = gr.Button("Run Detection", variant="primary")
        clear_button = gr.Button("Clear", variant="secondary")
    with gr.Row():
        output = gr.Textbox(
            label="Prediction",
            placeholder="Prediction: Human or AI",
            elem_id="output-text",
        )
    submit_button.click(
        run_test_power, inputs=[model_name, input_text, input_text], outputs=output
    )
    clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])
    with gr.Accordion("Disclaimer", open=False):
        gr.Markdown(
            """
            - **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
            - **Accuracy**: Results may vary based on input length and quality.
            """
        )
    with gr.Accordion("Citations", open=False):
        gr.Markdown(
            """
            ```
            @inproceedings{zhangs2024MMDMP,
                title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
                author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
                booktitle = {International Conference on Learning Representations (ICLR)},
                year={2024}
            }
            ```
            """
        )

app.launch()