File size: 5,229 Bytes
4a98f26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
"""
LangChain์ ํ์ฉํ RAG ์ฒด์ธ ๊ตฌํ
"""
from typing import List, Dict, Any
from langchain.schema import Document
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.chat_models import ChatOllama
from langchain_openai import ChatOpenAI
from config import (
OLLAMA_HOST, LLM_MODEL, USE_OPENAI,
OPENAI_API_KEY, TOP_K_RETRIEVAL, TOP_K_RERANK
)
from vector_store import VectorStore
from reranker import Reranker
class RAGChain:
def __init__(self, vector_store: VectorStore, use_reranker: bool = True):
"""
RAG ์ฒด์ธ ์ด๊ธฐํ (ํ๊ฒฝ์ ๋ฐ๋ฅธ LLM ์ ํ)
Args:
vector_store: ๋ฒกํฐ ์คํ ์ด ์ธ์คํด์ค
use_reranker: ๋ฆฌ๋ญ์ปค ์ฌ์ฉ ์ฌ๋ถ
"""
try:
print("RAGChain ์ด๊ธฐํ ์์...")
self.vector_store = vector_store
self.use_reranker = use_reranker
print(f"๋ฆฌ๋ญ์ปค ์ฌ์ฉ ์ฌ๋ถ: {use_reranker}")
if use_reranker:
try:
self.reranker = Reranker()
print("๋ฆฌ๋ญ์ปค ์ด๊ธฐํ ์ฑ๊ณต")
except Exception as e:
print(f"๋ฆฌ๋ญ์ปค ์ด๊ธฐํ ์คํจ: {str(e)}")
self.reranker = None
self.use_reranker = False
else:
self.reranker = None
# ํ๊ฒฝ์ ๋ฐ๋ฅธ LLM ๋ชจ๋ธ ์ค์
if USE_OPENAI or IS_HUGGINGFACE:
print(f"OpenAI ๋ชจ๋ธ ์ด๊ธฐํ: {LLM_MODEL}")
print(f"API ํค ์กด์ฌ ์ฌ๋ถ: {'์์' if OPENAI_API_KEY else '์์'}")
try:
self.llm = ChatOpenAI(
model_name=LLM_MODEL,
temperature=0.2,
api_key=OPENAI_API_KEY,
)
print("OpenAI ๋ชจ๋ธ ์ด๊ธฐํ ์ฑ๊ณต")
except Exception as e:
print(f"OpenAI ๋ชจ๋ธ ์ด๊ธฐํ ์คํจ: {str(e)}")
raise
else:
try:
print(f"Ollama ๋ชจ๋ธ ์ด๊ธฐํ: {LLM_MODEL}")
self.llm = ChatOllama(
model=LLM_MODEL,
temperature=0.2,
base_url=OLLAMA_HOST,
)
print("Ollama ๋ชจ๋ธ ์ด๊ธฐํ ์ฑ๊ณต")
except Exception as e:
print(f"Ollama ๋ชจ๋ธ ์ด๊ธฐํ ์คํจ: {str(e)}")
raise
# RAG ์ฒด์ธ ๊ตฌ์ฑ ๋ฐ ํ๋กฌํํธ ์ค์
print("RAG ์ฒด์ธ ์ค์ ์์...")
self.setup_chain()
print("RAG ์ฒด์ธ ์ค์ ์๋ฃ")
except Exception as e:
print(f"RAGChain ์ด๊ธฐํ ์ค ์์ธ ์ค๋ฅ: {str(e)}")
import traceback
traceback.print_exc()
raise
def setup_chain(self) -> None:
"""
RAG ์ฒด์ธ ๋ฐ ํ๋กฌํํธ ์ค์
"""
# ํ๋กฌํํธ ํ
ํ๋ฆฟ ์ ์
template = """
๋ค์ ์ ๋ณด๋ฅผ ๊ธฐ๋ฐ์ผ๋ก ์ง๋ฌธ์ ์ ํํ๊ฒ ๋ต๋ณํด์ฃผ์ธ์.
์ง๋ฌธ: {question}
์ฐธ๊ณ ์ ๋ณด:
{context}
์ฐธ๊ณ ์ ๋ณด์ ๋ต์ด ์๋ ๊ฒฝ์ฐ "์ ๊ณต๋ ๋ฌธ์์์ ํด๋น ์ ๋ณด๋ฅผ ์ฐพ์ ์ ์์ต๋๋ค."๋ผ๊ณ ๋ต๋ณํ์ธ์.
๋ต๋ณ์ ์ ํํ๊ณ ๊ฐ๊ฒฐํ๊ฒ ์ ๊ณตํ๋, ์ฐธ๊ณ ์ ๋ณด์์ ๊ทผ๊ฑฐ๋ฅผ ์ฐพ์ ์ค๋ช
ํด์ฃผ์ธ์.
์ฐธ๊ณ ์ ๋ณด์ ์ถ์ฒ๋ ํจ๊ป ์๋ ค์ฃผ์ธ์.
"""
self.prompt = PromptTemplate.from_template(template)
# RAG ์ฒด์ธ ์ ์
self.chain = (
{"context": self._retrieve, "question": RunnablePassthrough()}
| self.prompt
| self.llm
| StrOutputParser()
)
def _retrieve(self, query: str) -> str:
"""
์ฟผ๋ฆฌ์ ๋ํ ๊ด๋ จ ๋ฌธ์ ๊ฒ์ ๋ฐ ์ปจํ
์คํธ ๊ตฌ์ฑ
Args:
query: ์ฌ์ฉ์ ์ง๋ฌธ
Returns:
๊ฒ์ ๊ฒฐ๊ณผ๋ฅผ ํฌํจํ ์ปจํ
์คํธ ๋ฌธ์์ด
"""
# ๋ฒกํฐ ๊ฒ์ ์ํ
docs = self.vector_store.similarity_search(query, k=TOP_K_RETRIEVAL)
# ๋ฆฌ๋ญ์ปค ์ ์ฉ (์ ํ์ )
if self.use_reranker and docs:
docs = self.reranker.rerank(query, docs, top_k=TOP_K_RERANK)
# ๊ฒ์ ๊ฒฐ๊ณผ ์ปจํ
์คํธ ๊ตฌ์ฑ
context_parts = []
for i, doc in enumerate(docs, 1):
source = doc.metadata.get("source", "์ ์ ์๋ ์ถ์ฒ")
page = doc.metadata.get("page", "")
source_info = f"{source}"
if page:
source_info += f" (ํ์ด์ง: {page})"
context_parts.append(f"[์ฐธ๊ณ ์๋ฃ {i}] - ์ถ์ฒ: {source_info}\n{doc.page_content}\n")
return "\n".join(context_parts)
def run(self, query: str) -> str:
"""
์ฌ์ฉ์ ์ฟผ๋ฆฌ์ ๋ํ RAG ํ์ดํ๋ผ์ธ ์คํ
Args:
query: ์ฌ์ฉ์ ์ง๋ฌธ
Returns:
๋ชจ๋ธ ์๋ต ๋ฌธ์์ด
"""
return self.chain.invoke(query) |