Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
-
from datasets import load_dataset
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_repo_id = "stabilityai/sdxl-turbo" #
|
10 |
|
11 |
if torch.cuda.is_available():
|
12 |
torch_dtype = torch.float16
|
@@ -19,10 +20,8 @@ pipe = pipe.to(device)
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
22 |
-
# 載入你的 dataset,這裡假設有一個 "prompt" 欄位
|
23 |
-
dataset = load_dataset("jeffyuyu/labeled_images_demo_BLIP2", split="train")
|
24 |
-
dataset_prompts = list(dataset["label"])
|
25 |
|
|
|
26 |
def infer(
|
27 |
prompt,
|
28 |
negative_prompt,
|
@@ -36,7 +35,9 @@ def infer(
|
|
36 |
):
|
37 |
if randomize_seed:
|
38 |
seed = random.randint(0, MAX_SEED)
|
|
|
39 |
generator = torch.Generator().manual_seed(seed)
|
|
|
40 |
image = pipe(
|
41 |
prompt=prompt,
|
42 |
negative_prompt=negative_prompt,
|
@@ -46,8 +47,10 @@ def infer(
|
|
46 |
height=height,
|
47 |
generator=generator,
|
48 |
).images[0]
|
|
|
49 |
return image, seed
|
50 |
|
|
|
51 |
examples = [
|
52 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
53 |
"An astronaut riding a green horse",
|
@@ -63,13 +66,8 @@ css = """
|
|
63 |
|
64 |
with gr.Blocks(css=css) as demo:
|
65 |
with gr.Column(elem_id="col-container"):
|
66 |
-
gr.Markdown("# Text-to-Image Gradio Template")
|
67 |
-
|
68 |
-
dataset_selector = gr.Dropdown(
|
69 |
-
choices=dataset_prompts,
|
70 |
-
label="或從資料集中選取一個 prompt",
|
71 |
-
value=dataset_prompts[0] if dataset_prompts else "",
|
72 |
-
)
|
73 |
with gr.Row():
|
74 |
prompt = gr.Text(
|
75 |
label="Prompt",
|
@@ -78,8 +76,11 @@ with gr.Blocks(css=css) as demo:
|
|
78 |
placeholder="Enter your prompt",
|
79 |
container=False,
|
80 |
)
|
|
|
81 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
|
|
82 |
result = gr.Image(label="Result", show_label=False)
|
|
|
83 |
with gr.Accordion("Advanced Settings", open=False):
|
84 |
negative_prompt = gr.Text(
|
85 |
label="Negative prompt",
|
@@ -87,6 +88,7 @@ with gr.Blocks(css=css) as demo:
|
|
87 |
placeholder="Enter a negative prompt",
|
88 |
visible=False,
|
89 |
)
|
|
|
90 |
seed = gr.Slider(
|
91 |
label="Seed",
|
92 |
minimum=0,
|
@@ -94,46 +96,44 @@ with gr.Blocks(css=css) as demo:
|
|
94 |
step=1,
|
95 |
value=0,
|
96 |
)
|
|
|
97 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
98 |
with gr.Row():
|
99 |
width = gr.Slider(
|
100 |
label="Width",
|
101 |
minimum=256,
|
102 |
maximum=MAX_IMAGE_SIZE,
|
103 |
step=32,
|
104 |
-
value=1024,
|
105 |
)
|
|
|
106 |
height = gr.Slider(
|
107 |
label="Height",
|
108 |
minimum=256,
|
109 |
maximum=MAX_IMAGE_SIZE,
|
110 |
step=32,
|
111 |
-
value=1024,
|
112 |
)
|
|
|
113 |
with gr.Row():
|
114 |
guidance_scale = gr.Slider(
|
115 |
label="Guidance scale",
|
116 |
minimum=0.0,
|
117 |
maximum=10.0,
|
118 |
step=0.1,
|
119 |
-
value=0.0,
|
120 |
)
|
|
|
121 |
num_inference_steps = gr.Slider(
|
122 |
label="Number of inference steps",
|
123 |
minimum=1,
|
124 |
maximum=50,
|
125 |
step=1,
|
126 |
-
value=2,
|
127 |
)
|
128 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
129 |
-
|
130 |
-
# 按鈕:使用下拉選單選取的 prompt 填入上面的 prompt 輸入框
|
131 |
-
def fill_prompt(selected_prompt):
|
132 |
-
return selected_prompt
|
133 |
-
|
134 |
-
dataset_btn = gr.Button("填入資料集中的 prompt")
|
135 |
-
dataset_btn.click(fn=fill_prompt, inputs=dataset_selector, outputs=prompt)
|
136 |
|
|
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
@@ -151,4 +151,4 @@ with gr.Blocks(css=css) as demo:
|
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
|
5 |
+
# import spaces #[uncomment to use ZeroGPU]
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
torch_dtype = torch.float16
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
|
|
|
|
|
|
23 |
|
24 |
+
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
prompt,
|
27 |
negative_prompt,
|
|
|
35 |
):
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
+
|
39 |
generator = torch.Generator().manual_seed(seed)
|
40 |
+
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompt,
|
|
|
47 |
height=height,
|
48 |
generator=generator,
|
49 |
).images[0]
|
50 |
+
|
51 |
return image, seed
|
52 |
|
53 |
+
|
54 |
examples = [
|
55 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
"An astronaut riding a green horse",
|
|
|
66 |
|
67 |
with gr.Blocks(css=css) as demo:
|
68 |
with gr.Column(elem_id="col-container"):
|
69 |
+
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
+
|
|
|
|
|
|
|
|
|
|
|
71 |
with gr.Row():
|
72 |
prompt = gr.Text(
|
73 |
label="Prompt",
|
|
|
76 |
placeholder="Enter your prompt",
|
77 |
container=False,
|
78 |
)
|
79 |
+
|
80 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
+
|
82 |
result = gr.Image(label="Result", show_label=False)
|
83 |
+
|
84 |
with gr.Accordion("Advanced Settings", open=False):
|
85 |
negative_prompt = gr.Text(
|
86 |
label="Negative prompt",
|
|
|
88 |
placeholder="Enter a negative prompt",
|
89 |
visible=False,
|
90 |
)
|
91 |
+
|
92 |
seed = gr.Slider(
|
93 |
label="Seed",
|
94 |
minimum=0,
|
|
|
96 |
step=1,
|
97 |
value=0,
|
98 |
)
|
99 |
+
|
100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
+
|
102 |
with gr.Row():
|
103 |
width = gr.Slider(
|
104 |
label="Width",
|
105 |
minimum=256,
|
106 |
maximum=MAX_IMAGE_SIZE,
|
107 |
step=32,
|
108 |
+
value=1024, # Replace with defaults that work for your model
|
109 |
)
|
110 |
+
|
111 |
height = gr.Slider(
|
112 |
label="Height",
|
113 |
minimum=256,
|
114 |
maximum=MAX_IMAGE_SIZE,
|
115 |
step=32,
|
116 |
+
value=1024, # Replace with defaults that work for your model
|
117 |
)
|
118 |
+
|
119 |
with gr.Row():
|
120 |
guidance_scale = gr.Slider(
|
121 |
label="Guidance scale",
|
122 |
minimum=0.0,
|
123 |
maximum=10.0,
|
124 |
step=0.1,
|
125 |
+
value=0.0, # Replace with defaults that work for your model
|
126 |
)
|
127 |
+
|
128 |
num_inference_steps = gr.Slider(
|
129 |
label="Number of inference steps",
|
130 |
minimum=1,
|
131 |
maximum=50,
|
132 |
step=1,
|
133 |
+
value=2, # Replace with defaults that work for your model
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
gr.on(
|
138 |
triggers=[run_button.click, prompt.submit],
|
139 |
fn=infer,
|
|
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
+
demo.launch()
|