Commit
·
bc4b1cb
1
Parent(s):
3915f8f
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
9 |
st.title('Ethical Judgment Classifier')
|
10 |
st.write('This app uses a pre-trained Distilbert model fine-tuned on the Commonsense Ethics dataset from the Aligning AI With Shared Human Values project (for more information, see https://github.com/hendrycks/ethics). It judges whether a given action of scenario is wrong or not wrong and uses transformers-interpret (https://pypi.org/project/transformers-interpret/) to show how the words in your scenario affected the model\'s judgment.')
|
11 |
|
12 |
-
loaded_model = DistilBertForSequenceClassification.from_pretrained('
|
13 |
model_name = 'distilbert-base-uncased'
|
14 |
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
15 |
cls_explainer = SequenceClassificationExplainer(loaded_model, tokenizer)
|
@@ -20,7 +20,7 @@ text = st.text_input('Enter a scenario or action.')
|
|
20 |
|
21 |
if text:
|
22 |
answer = clf(text)
|
23 |
-
label = 'wrong' if answer[0]['label'] == '
|
24 |
st.write(f'This action is {label} (confidence level {answer[0]["score"]*100:.2f}%).')
|
25 |
attributions = cls_explainer(text)
|
26 |
df = pd.DataFrame(attributions[1:-1])
|
|
|
9 |
st.title('Ethical Judgment Classifier')
|
10 |
st.write('This app uses a pre-trained Distilbert model fine-tuned on the Commonsense Ethics dataset from the Aligning AI With Shared Human Values project (for more information, see https://github.com/hendrycks/ethics). It judges whether a given action of scenario is wrong or not wrong and uses transformers-interpret (https://pypi.org/project/transformers-interpret/) to show how the words in your scenario affected the model\'s judgment.')
|
11 |
|
12 |
+
loaded_model = DistilBertForSequenceClassification.from_pretrained('distilbert')
|
13 |
model_name = 'distilbert-base-uncased'
|
14 |
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
15 |
cls_explainer = SequenceClassificationExplainer(loaded_model, tokenizer)
|
|
|
20 |
|
21 |
if text:
|
22 |
answer = clf(text)
|
23 |
+
label = 'wrong' if answer[0]['label'] == 'LABEL_0' else 'not wrong'
|
24 |
st.write(f'This action is {label} (confidence level {answer[0]["score"]*100:.2f}%).')
|
25 |
attributions = cls_explainer(text)
|
26 |
df = pd.DataFrame(attributions[1:-1])
|