jchwenger
commited on
Commit
·
62100c8
1
Parent(s):
3de15d6
app |
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from the Gradio tutorials:
|
2 |
+
# https://www.gradio.app/guides/creating-a-chatbot-fast#example-using-a-local-open-source-llm-with-hugging-face
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Get cpu, gpu or mps device for training.
|
9 |
+
# See: https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html#creating-models
|
10 |
+
device = (
|
11 |
+
"cuda"
|
12 |
+
if torch.cuda.is_available()
|
13 |
+
else "mps"
|
14 |
+
if torch.backends.mps.is_available()
|
15 |
+
else "cpu"
|
16 |
+
)
|
17 |
+
|
18 |
+
from transformers import AutoTokenizer
|
19 |
+
from transformers import AutoModelForCausalLM
|
20 |
+
from transformers import StoppingCriteria
|
21 |
+
from transformers import StoppingCriteriaList
|
22 |
+
from transformers import TextIteratorStreamer
|
23 |
+
|
24 |
+
from threading import Thread
|
25 |
+
|
26 |
+
MODEL_ID = "togethercomputer/RedPajama-INCITE-Chat-3B-v1"
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.float16)
|
29 |
+
model = model.to(device) # move model to GPU
|
30 |
+
|
31 |
+
class StopOnTokens(StoppingCriteria):
|
32 |
+
"""
|
33 |
+
Class used `stopping_criteria` in `generate_kwargs` that provides an additional
|
34 |
+
way of stopping the generation loop (if this class returns `True` on a token,
|
35 |
+
the generation is stopped)).
|
36 |
+
"""
|
37 |
+
# note: Python now supports type hints, see this: https://realpython.com/lessons/type-hinting/
|
38 |
+
# (for the **kwargs see also: https://realpython.com/python-kwargs-and-args/)
|
39 |
+
# this could also be written: def __call__(self, input_ids, scores, **kwargs):
|
40 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
41 |
+
stop_ids = [29, 0] # see the cell below to understand where these come from
|
42 |
+
for stop_id in stop_ids:
|
43 |
+
if input_ids[0][-1] == stop_id:
|
44 |
+
return True
|
45 |
+
return False
|
46 |
+
|
47 |
+
def predict(message, history):
|
48 |
+
|
49 |
+
history_transformer_format = history + [[message, ""]]
|
50 |
+
stop = StopOnTokens()
|
51 |
+
|
52 |
+
# useful to debug
|
53 |
+
# msg = "history"
|
54 |
+
# print(msg)
|
55 |
+
# print(*history_transformer_format, sep="\n")
|
56 |
+
# print("***")
|
57 |
+
|
58 |
+
# at each step, we feed the entire history in string format,
|
59 |
+
# restoring the format used in their dataset with new lines
|
60 |
+
# and <human>: or <bot>: added before the messages
|
61 |
+
messages = "".join(
|
62 |
+
["".join(
|
63 |
+
["\n<human>:"+item[0], "\n<bot>:"+item[1]]
|
64 |
+
)
|
65 |
+
for item in history_transformer_format]
|
66 |
+
)
|
67 |
+
# # to see what we feed to our net:
|
68 |
+
# msg = "string prompt"
|
69 |
+
# print(msg)
|
70 |
+
# print("-" * len(msg))
|
71 |
+
# print(messages)
|
72 |
+
# print("-" * 40)
|
73 |
+
|
74 |
+
# convert the string into tensors & move to GPU
|
75 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
|
76 |
+
|
77 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True)
|
78 |
+
generate_kwargs = dict(
|
79 |
+
model_inputs,
|
80 |
+
streamer=streamer,
|
81 |
+
max_new_tokens=1024,
|
82 |
+
do_sample=True,
|
83 |
+
top_p=0.95,
|
84 |
+
top_k=1000,
|
85 |
+
temperature=1.0,
|
86 |
+
pad_token_id=tokenizer.eos_token_id, # mute annoying warning: https://stackoverflow.com/a/71397707
|
87 |
+
num_beams=1, # this is for beam search (disabled), see: https://huggingface.co/blog/how-to-generate#beam-search
|
88 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
89 |
+
)
|
90 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
91 |
+
t.start()
|
92 |
+
|
93 |
+
partial_message = ""
|
94 |
+
for new_token in streamer:
|
95 |
+
# seen the format <human>: and \n<bot> above (when 'messages' is defined)?
|
96 |
+
# we stream the message *until* we encounter '<', which is by the end
|
97 |
+
if new_token != '<':
|
98 |
+
partial_message += new_token
|
99 |
+
yield partial_message
|
100 |
+
|
101 |
+
|
102 |
+
gr.ChatInterface(predict).queue().launch(debug=True)
|