Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import yaml | |
import pandas as pd | |
from typing import Annotated, Optional | |
from typing_extensions import TypedDict | |
from langgraph.graph import StateGraph, START, END | |
from langgraph.graph.message import add_messages | |
from langchain_openai import ChatOpenAI | |
from langgraph.prebuilt import create_react_agent | |
from langchain_community.tools import DuckDuckGoSearchRun,DuckDuckGoSearchResults | |
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage | |
from langchain_community.agent_toolkits.openapi.toolkit import RequestsToolkit | |
from langchain_community.utilities.requests import TextRequestsWrapper | |
from langchain.agents import AgentExecutor, load_tools | |
from langchain_community.utilities import GoogleSerperAPIWrapper | |
from langchain_community.tools.riza.command import ExecPython | |
os.environ["SERPER_API_KEY"] = "..." | |
os.environ["RIZA_API_KEY"] = "..." | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
vision_llm = ChatOpenAI(model="qwen2.5-vl-7b-instruct", base_url="http://172.16.216.190:1234/v1") | |
def extract_text(img_path: str) -> str: | |
""" | |
Extract text from an image file using a multimodal model. | |
Master Wayne often leaves notes with his training regimen or meal plans. | |
This allows me to properly analyze the contents. | |
""" | |
all_text = "" | |
try: | |
# Read image and encode as base64 | |
with open(img_path, "rb") as image_file: | |
image_bytes = image_file.read() | |
image_base64 = base64.b64encode(image_bytes).decode("utf-8") | |
# Prepare the prompt including the base64 image data | |
message = [ | |
HumanMessage( | |
content=[ | |
{ | |
"type": "text", | |
"text": ( | |
"Extract all the text from this image. " | |
"Return only the extracted text, no explanations." | |
), | |
}, | |
{ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/png;base64,{image_base64}" | |
}, | |
}, | |
] | |
) | |
] | |
# Call the vision-capable model | |
response = vision_llm.invoke(message) | |
# Append extracted text | |
all_text += response.content + "\n\n" | |
return all_text.strip() | |
except Exception as e: | |
# A butler should handle errors gracefully | |
error_msg = f"Error extracting text: {str(e)}" | |
print(error_msg) | |
return "" | |
# --- Basic Agent Definition --- | |
class State(TypedDict): | |
# Messages have the type "list". The `add_messages` function | |
# in the annotation defines how this state key should be updated | |
# (in this case, it appends messages to the list, rather than overwriting them) | |
messages: Annotated[list, add_messages] | |
input_file: Optional[str] | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class BasicAgent: | |
def __init__(self): | |
# model = ChatOpenAI( | |
# # model="qwen3-30b-a3b-mlx", | |
# model="meta-llama-3.1-8b-instruct", | |
# base_url="http://192.168.1.82:1234/v1", | |
# temperature=0, | |
# api_key="not-needed" | |
# ) | |
toolkit = RequestsToolkit( | |
requests_wrapper=TextRequestsWrapper(headers={}), | |
allow_dangerous_requests=True, | |
) | |
tools = [extract_text, ExecPython()] + toolkit.get_tools() + load_tools(["google-serper"]) | |
self.agent = create_react_agent( | |
model="gemini-2.0-flash", | |
tools=tools ) | |
print("BasicAgent initialized.") | |
def __call__(self, question: str, file: str, taskId: str): | |
print(f"Agent received question (first 100 chars): {question[:100]}...") | |
if file : | |
question = question + f" You can donwload the file associated at {DEFAULT_API_URL}/files/{taskId}" | |
result = self.agent.invoke({"messages": [HumanMessage(content=question)]}) | |
answer = result['messages'][-1].content | |
return answer | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
os.environ["HF_TOKEN"] = "..." | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
# questions_url = f"{api_url}/random-question" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
question_file = item.get("file_name") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text, question_file, task_id) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
print(f"Question: {item}, Task ID: {task_id}, Submitted Answer: {submitted_answer}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |