Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import yaml | |
import pandas as pd | |
from smolagents import ( | |
CodeAgent, | |
ToolCallingAgent, | |
DuckDuckGoSearchTool, | |
FinalAnswerTool, | |
VisitWebpageTool, | |
LiteLLMModel, | |
WikipediaSearchTool, | |
tool | |
) | |
from markdownify import markdownify | |
from litellm import completion | |
from qwen_vl_utils import process_vision_info | |
from urllib.parse import urlparse | |
from typing import List, Optional, Dict, Any | |
import tempfile | |
from io import BytesIO | |
from PIL import Image | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
def download_file_from_url(url: str, filename: Optional[str] = None) -> str: | |
""" | |
Download a file from a URL and save it to a temporary location. | |
Args: | |
url: The URL to download from | |
filename: Optional filename, will generate one based on URL if not provided | |
Returns: | |
Path to the downloaded file | |
""" | |
try: | |
# Parse URL to get filename if not provided | |
if not filename: | |
path = urlparse(url).path | |
filename = os.path.basename(path) | |
if not filename: | |
# Generate a random name if we couldn't extract one | |
import uuid | |
filename = f"downloaded_{uuid.uuid4().hex[:8]}" | |
# Create temporary file | |
temp_dir = tempfile.gettempdir() | |
filepath = os.path.join(temp_dir, filename) | |
# Download the file | |
response = requests.get(url, stream=True) | |
response.raise_for_status() | |
# Save the file | |
with open(filepath, 'wb') as f: | |
for chunk in response.iter_content(chunk_size=8192): | |
f.write(chunk) | |
return f"File downloaded to {filepath}. You can now process this file." | |
except Exception as e: | |
return f"Error downloading file: {str(e)}" | |
def analyze_video(url: str, question: str) -> str: | |
"""Analyze a video and answer the question. | |
Args: | |
url: the URL of the video. | |
question: the question to awnser based on the video analysis. | |
Returns: | |
The correct anwser of the question after the analysis of the video input. | |
""" | |
messages=[ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": question}, | |
{"type": "video","video": url, "max_pixels": 360 * 420, "fps": 1.0,}], | |
} | |
] | |
# image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True) | |
# mm_data = {} | |
# if image_inputs is not None: | |
# mm_data["image"] = image_inputs | |
# if video_inputs is not None: | |
# mm_data["video"] = video_inputs | |
# llm_inputs = { | |
# "prompt": prompt, | |
# "multi_modal_data": mm_data, | |
# # FPS will be returned in video_kwargs | |
# "mm_processor_kwargs": video_kwargs, | |
# } | |
response = completion( | |
api_base="http://192.168.1.183:1234/v1", | |
model="lm_studio/qwen2.5-vl-7b-instruct", | |
messages=messages, | |
) | |
return response.choices[0].message.content | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
class BasicAgent: | |
def __init__(self): | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
model = LiteLLMModel(model_id="lm_studio/qwen2.5-coder-14b-instruct", api_base="http://192.168.1.183:1234/v1") | |
self.agent = CodeAgent( | |
model=model, | |
additional_authorized_imports=["time", "pandas", "numpy", "re", "openpyxl"], | |
tools=[DuckDuckGoSearchTool(),VisitWebpageTool(),WikipediaSearchTool(), download_file_from_url, FinalAnswerTool()], ## add your tools here (don't remove final answer) | |
max_steps=16, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
print("BasicAgent initialized.") | |
def __call__(self, question: str, file: str, taskId: str): | |
print(f"Agent received question (first 100 chars): {question[:100]}...") | |
if file : | |
if file.endswith('png') : | |
images = [Image.open(BytesIO(requests.get(f"{DEFAULT_API_URL}/files/{taskId}", timeout=10).content)).convert("RGB")] | |
fixed_answer_pict = self.agent.run(question, False, True, images); | |
return fixed_answer_pict; | |
else: | |
question = question + f" You can donwload the file associated at {DEFAULT_API_URL}/files/{taskId}" | |
fixed_answer = self.agent.run(question, False, True); | |
print(f"Agent returning fixed answer: {fixed_answer}") | |
return fixed_answer | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
# questions_url = f"{api_url}/random-question" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
question_file = item.get("file_name") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text, question_file, task_id) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
print(f"Question: {item}, Task ID: {task_id}, Submitted Answer: {submitted_answer}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |