jbilcke-hf HF Staff commited on
Commit
ba2d0f8
·
verified ·
1 Parent(s): 010e8f7

Delete script.py

Browse files
Files changed (1) hide show
  1. script.py +0 -362
script.py DELETED
@@ -1,362 +0,0 @@
1
- import numpy as np
2
- import cv2
3
- import trimesh
4
- import argparse
5
- from PIL import Image
6
- from sklearn.cluster import KMeans
7
-
8
- class SatelliteModelGenerator:
9
- def __init__(self, building_height=0.05):
10
- self.building_height = building_height
11
-
12
- # Reference colors for segmentation (RGB)
13
- self.shadow_colors = np.array([
14
- [31, 42, 76],
15
- [58, 64, 92],
16
- [15, 27, 56],
17
- [21, 22, 50],
18
- [76, 81, 99]
19
- ])
20
-
21
- self.road_colors = np.array([
22
- [187, 182, 175],
23
- [138, 138, 138],
24
- [142, 142, 129],
25
- [202, 199, 189]
26
- ])
27
-
28
- self.water_colors = np.array([
29
- [167, 225, 217],
30
- [67, 101, 97],
31
- [53, 83, 84],
32
- [47, 94, 100],
33
- [73, 131, 135]
34
- ])
35
-
36
- # Convert and normalize reference colors to HSV
37
- self.shadow_colors_hsv = cv2.cvtColor(self.shadow_colors.reshape(-1, 1, 3).astype(np.uint8),
38
- cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float)
39
- self.road_colors_hsv = cv2.cvtColor(self.road_colors.reshape(-1, 1, 3).astype(np.uint8),
40
- cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float)
41
- self.water_colors_hsv = cv2.cvtColor(self.water_colors.reshape(-1, 1, 3).astype(np.uint8),
42
- cv2.COLOR_RGB2HSV).reshape(-1, 3).astype(float)
43
-
44
- # Normalize HSV values
45
- for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
46
- colors_hsv[:, 0] = colors_hsv[:, 0] * 2
47
- colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
48
-
49
- # Color tolerances from original segmenter
50
- self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
51
- self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
52
- self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
53
-
54
- # Output colors (BGR for OpenCV)
55
- self.colors = {
56
- 'black': np.array([0, 0, 0]), # Shadows
57
- 'blue': np.array([255, 0, 0]), # Water
58
- 'green': np.array([0, 255, 0]), # Vegetation
59
- 'gray': np.array([128, 128, 128]), # Roads
60
- 'brown': np.array([0, 140, 255]), # Terrain
61
- 'white': np.array([255, 255, 255]) # Buildings
62
- }
63
-
64
- # Constants for height estimation
65
- self.shadow_search_distance = 5
66
- self.min_area_for_clustering = 1000
67
- self.residential_height_factor = 0.6
68
- self.isolation_threshold = 0.6
69
-
70
- def color_distance_hsv(self, pixel_hsv, reference_hsv, tolerance):
71
- """Calculate if a pixel is within tolerance of reference color in HSV space"""
72
- pixel_h = float(pixel_hsv[0]) * 2
73
- pixel_s = float(pixel_hsv[1]) / 255
74
- pixel_v = float(pixel_hsv[2]) / 255
75
-
76
- hue_diff = min(abs(pixel_h - reference_hsv[0]),
77
- 360 - abs(pixel_h - reference_hsv[0]))
78
- sat_diff = abs(pixel_s - reference_hsv[1])
79
- val_diff = abs(pixel_v - reference_hsv[2])
80
-
81
- return (hue_diff <= tolerance['hue'] and
82
- sat_diff <= tolerance['sat'] and
83
- val_diff <= tolerance['val'])
84
-
85
- def get_dominant_surrounding_color(self, output, y, x):
86
- """Determine dominant non-building color in neighborhood"""
87
- height, width = output.shape[:2]
88
- surroundings = []
89
-
90
- for dy in [-1, 0, 1]:
91
- for dx in [-1, 0, 1]:
92
- if dx == 0 and dy == 0:
93
- continue
94
-
95
- ny, nx = y + dy, x + dx
96
- if 0 <= ny < height and 0 <= nx < width:
97
- pixel_color = tuple(output[ny, nx].tolist())
98
- if not np.array_equal(output[ny, nx], self.colors['white']):
99
- surroundings.append(pixel_color)
100
-
101
- if not surroundings:
102
- return None
103
-
104
- surrounding_ratio = len(surroundings) / 8.0
105
-
106
- if surrounding_ratio >= self.isolation_threshold:
107
- color_counts = {}
108
- for color in surroundings:
109
- color_str = str(color)
110
- color_counts[color_str] = color_counts.get(color_str, 0) + 1
111
-
112
- most_common = max(color_counts.items(), key=lambda x: x[1])[0]
113
- return np.array(eval(most_common))
114
-
115
- return None
116
-
117
- def segment_image(self, img, window_size=5):
118
- """Segment image using improved color detection"""
119
- hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
120
- output = np.zeros_like(img)
121
-
122
- pad = window_size // 2
123
- hsv_pad = np.pad(hsv, ((pad, pad), (pad, pad), (0, 0)), mode='edge')
124
-
125
- height, width = img.shape[:2]
126
-
127
- # First pass: initial segmentation
128
- for y in range(height):
129
- for x in range(width):
130
- window = hsv_pad[y:y+window_size, x:x+window_size]
131
- center_hsv = window[pad, pad]
132
-
133
- is_shadow = any(self.color_distance_hsv(center_hsv, ref_hsv, self.shadow_tolerance)
134
- for ref_hsv in self.shadow_colors_hsv)
135
-
136
- is_road = any(self.color_distance_hsv(center_hsv, ref_hsv, self.road_tolerance)
137
- for ref_hsv in self.road_colors_hsv)
138
-
139
- is_water = any(self.color_distance_hsv(center_hsv, ref_hsv, self.water_tolerance)
140
- for ref_hsv in self.water_colors_hsv)
141
-
142
- if is_shadow:
143
- output[y, x] = self.colors['black']
144
- elif is_water:
145
- output[y, x] = self.colors['blue']
146
- elif is_road:
147
- output[y, x] = self.colors['gray']
148
- else:
149
- h, s, v = center_hsv
150
- h = float(h) * 2 # Convert to 0-360 range
151
- s = float(s) / 255
152
- v = float(v) / 255
153
-
154
- # Check for pinkish building tones (around red hue with specific saturation)
155
- is_pinkish = (
156
- ((h >= 340 or h <= 15) and # Red-pink hue range
157
- 0.2 <= s <= 0.6 and # Moderate saturation
158
- 0.3 <= v <= 0.7) # Moderate brightness
159
- )
160
-
161
- # Vegetation detection (green)
162
- is_vegetation = (
163
- 40 <= h <= 150 and
164
- s >= 0.15
165
- )
166
-
167
- # Soil/dirt detection (yellow-brown, avoiding pinkish tones)
168
- is_soil = (
169
- 15 <= h <= 45 and # Yellow-brown hue range
170
- 0.15 <= s <= 0.45 and # Lower saturation for dirt
171
- not is_pinkish # Exclude pinkish tones
172
- )
173
-
174
- if is_pinkish:
175
- output[y, x] = self.colors['white'] # Buildings
176
- elif is_vegetation:
177
- output[y, x] = self.colors['green'] # Vegetation
178
- elif is_soil:
179
- output[y, x] = self.colors['brown'] # Soil/dirt
180
- else:
181
- # Default to building for light-colored surfaces
182
- output[y, x] = self.colors['white']
183
-
184
- # Second pass: handle isolated building pixels
185
- final_output = output.copy()
186
- for y in range(height):
187
- for x in range(width):
188
- if np.array_equal(output[y, x], self.colors['white']):
189
- dominant_color = self.get_dominant_surrounding_color(output, y, x)
190
- if dominant_color is not None:
191
- final_output[y, x] = dominant_color
192
-
193
- return final_output
194
-
195
- def estimate_heights(self, img, segmented):
196
- """Estimate building heights"""
197
- buildings_mask = np.all(segmented == self.colors['white'], axis=2)
198
- shadows_mask = np.all(segmented == self.colors['black'], axis=2)
199
-
200
- num_buildings, labels = cv2.connectedComponents(buildings_mask.astype(np.uint8))
201
-
202
- areas = np.bincount(labels.flatten())[1:] # Skip background
203
- max_area = np.max(areas) if len(areas) > 0 else 1
204
-
205
- height_map = np.zeros_like(labels, dtype=np.float32)
206
-
207
- for label in range(1, num_buildings):
208
- building_mask = (labels == label)
209
- if not np.any(building_mask):
210
- continue
211
-
212
- area = areas[label-1]
213
- size_factor = 0.3 + 0.7 * (area / max_area)
214
-
215
- dilated = cv2.dilate(building_mask.astype(np.uint8), np.ones((5,5), np.uint8))
216
- shadow_ratio = np.sum(dilated & shadows_mask) / np.sum(dilated)
217
- shadow_factor = 0.2 + 0.8 * shadow_ratio
218
-
219
- if area >= self.min_area_for_clustering:
220
- building_intensities = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[building_mask]
221
- kmeans = KMeans(n_clusters=2, random_state=42)
222
- clusters = kmeans.fit_predict(building_intensities.reshape(-1, 1))
223
- cluster_means = [building_intensities[clusters == i].mean() for i in range(2)]
224
- height_factor = self.residential_height_factor if cluster_means[0] > cluster_means[1] else 1.0
225
- else:
226
- height_factor = 1.0
227
-
228
- final_height = size_factor * shadow_factor * height_factor
229
- height_map[building_mask] = final_height
230
-
231
- return height_map * 0.15
232
-
233
- def generate_mesh(self, height_map, texture_img, add_walls=True):
234
- """Generate 3D mesh"""
235
- height, width = height_map.shape
236
-
237
- x, z = np.meshgrid(np.arange(width), np.arange(height))
238
- vertices = np.stack([x, height_map * self.building_height, z], axis=-1)
239
- vertices = vertices.reshape(-1, 3)
240
-
241
- scale = max(width, height)
242
- vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
243
- vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
244
- vertices[:, 1] = vertices[:, 1] * 2 - 1
245
-
246
- i, j = np.meshgrid(np.arange(height-1), np.arange(width-1), indexing='ij')
247
- v0 = (i * width + j).flatten()
248
- v1 = v0 + 1
249
- v2 = ((i + 1) * width + j).flatten()
250
- v3 = v2 + 1
251
-
252
- faces = np.vstack((
253
- np.column_stack((v0, v2, v1)),
254
- np.column_stack((v1, v2, v3))
255
- ))
256
-
257
- uvs = np.zeros((vertices.shape[0], 2))
258
- uvs[:, 0] = x.flatten() / (width - 1)
259
- uvs[:, 1] = 1 - (z.flatten() / (height - 1))
260
-
261
- if len(texture_img.shape) == 3:
262
- if texture_img.shape[2] == 4:
263
- texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
264
- else:
265
- texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
266
-
267
- mesh = trimesh.Trimesh(
268
- vertices=vertices,
269
- faces=faces,
270
- visual=trimesh.visual.TextureVisuals(
271
- uv=uvs,
272
- image=Image.fromarray(texture_img)
273
- )
274
- )
275
-
276
- if add_walls:
277
- mesh = self._add_walls(mesh, height_map)
278
-
279
- return mesh
280
-
281
- def _add_walls(self, mesh, height_map):
282
- """Add vertical walls at building edges"""
283
- edges = cv2.Canny(height_map.astype(np.uint8) * 255, 100, 200)
284
- height, width = height_map.shape
285
- scale = max(width, height)
286
-
287
- edge_coords = np.column_stack(np.where(edges > 0))
288
- if len(edge_coords) == 0:
289
- return mesh
290
-
291
- valid_mask = (edge_coords[:, 0] < height - 1) & (edge_coords[:, 1] < width - 1)
292
- edge_coords = edge_coords[valid_mask]
293
-
294
- if len(edge_coords) == 0:
295
- return mesh
296
-
297
- y, x = edge_coords.T
298
- heights = height_map[y, x]
299
-
300
- top_front = np.column_stack([x, heights * self.building_height, y])
301
- top_back = np.column_stack([x + 1, heights * self.building_height, y])
302
- bottom_front = np.column_stack([x, np.zeros_like(heights), y])
303
- bottom_back = np.column_stack([x + 1, np.zeros_like(heights), y])
304
-
305
- for vertices in [top_front, top_back, bottom_front, bottom_back]:
306
- vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
307
- vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
308
- vertices[:, 1] = vertices[:, 1] * 2 - 1
309
-
310
- new_vertices = np.vstack([top_front, top_back, bottom_front, bottom_back])
311
- vertex_count = len(edge_coords)
312
-
313
- indices = np.arange(4 * vertex_count).reshape(-1, 4)
314
- new_faces = np.vstack([
315
- np.column_stack([indices[:, 0], indices[:, 2], indices[:, 1]]),
316
- np.column_stack([indices[:, 1], indices[:, 2], indices[:, 3]])
317
- ])
318
-
319
- base_vertex_count = len(mesh.vertices)
320
- mesh.vertices = np.vstack((mesh.vertices, new_vertices))
321
- mesh.faces = np.vstack((mesh.faces, new_faces + base_vertex_count))
322
-
323
- return mesh
324
-
325
- def main():
326
- parser = argparse.ArgumentParser(description='Generate 3D mesh from satellite image')
327
- parser.add_argument('input_image', help='Path to satellite image')
328
- parser.add_argument('output_mesh', help='Path for output GLB file')
329
- parser.add_argument('--segmented_output', help='Optional path to save segmented image')
330
- parser.add_argument('--height', type=float, default=0.09, help='Height of buildings (default: 0.09)')
331
- parser.add_argument('--no_walls', action='store_true', help='Skip generating vertical walls')
332
- parser.add_argument('--window_size', type=int, default=5, help='Window size for segmentation analysis')
333
-
334
- args = parser.parse_args()
335
-
336
- # Load image
337
- img = cv2.imread(args.input_image)
338
- if img is None:
339
- raise ValueError(f"Could not read image at {args.input_image}")
340
-
341
- generator = SatelliteModelGenerator(building_height=args.height)
342
-
343
- # Process image
344
- print("Segmenting image...")
345
- segmented_img = generator.segment_image(img, args.window_size)
346
-
347
- print("Estimating heights...")
348
- height_map = generator.estimate_heights(img, segmented_img)
349
-
350
- # Save segmented image if requested
351
- if args.segmented_output:
352
- cv2.imwrite(args.segmented_output, segmented_img)
353
- print(f"Segmented image saved to {args.segmented_output}")
354
-
355
- # Generate and save mesh
356
- print("Generating mesh...")
357
- mesh = generator.generate_mesh(height_map, img, add_walls=not args.no_walls)
358
- mesh.export(args.output_mesh)
359
- print(f"Mesh exported to {args.output_mesh}")
360
-
361
- if __name__ == "__main__":
362
- main()