Commit
·
aaa160e
1
Parent(s):
075fea9
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import spaces
|
2 |
import os
|
3 |
import datetime
|
4 |
import einops
|
@@ -22,6 +22,28 @@ from myutils.misc import load_dreambooth_lora, rand_name
|
|
22 |
from myutils.wavelet_color_fix import wavelet_color_fix
|
23 |
from annotator.retinaface import RetinaFaceDetection
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
use_pasd_light = False
|
26 |
face_detector = RetinaFaceDetection()
|
27 |
|
@@ -84,7 +106,7 @@ def resize_image(image_path, target_height):
|
|
84 |
#resized_img.save(output_path)
|
85 |
return resized_img
|
86 |
|
87 |
-
@spaces.GPU(enable_queue=True)
|
88 |
def inference(input_image, prompt, a_prompt, n_prompt, denoise_steps, upscale, alpha, cfg, seed):
|
89 |
input_image = resize_image(input_image, 512)
|
90 |
process_size = 768
|
@@ -138,55 +160,18 @@ def inference(input_image, prompt, a_prompt, n_prompt, denoise_steps, upscale, a
|
|
138 |
print(e)
|
139 |
image = Image.new(mode="RGB", size=(512, 512))
|
140 |
|
141 |
-
|
142 |
-
image.save(f'result_{timestamp}.jpg', 'JPEG')
|
143 |
-
|
144 |
-
# Convert and save the image as JPEG
|
145 |
-
input_image.save(f'input_{timestamp}.jpg', 'JPEG')
|
146 |
-
|
147 |
-
return (f"input_{timestamp}.jpg", f"result_{timestamp}.jpg"), f"result_{timestamp}.jpg"
|
148 |
|
149 |
title = "Pixel-Aware Stable Diffusion for Real-ISR"
|
150 |
description = "Gradio Demo for PASD Real-ISR. To use it, simply upload your image, or click one of the examples to load them."
|
151 |
article = "<a href='https://github.com/yangxy/PASD' target='_blank'>Github Repo Pytorch</a>"
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
margin: 0 auto;
|
157 |
-
max-width: 720px;
|
158 |
-
}
|
159 |
-
#project-links{
|
160 |
-
margin: 0 0 12px !important;
|
161 |
-
column-gap: 8px;
|
162 |
-
display: flex;
|
163 |
-
justify-content: center;
|
164 |
-
flex-wrap: nowrap;
|
165 |
-
flex-direction: row;
|
166 |
-
align-items: center;
|
167 |
-
}
|
168 |
-
"""
|
169 |
-
|
170 |
-
with gr.Blocks(css=css) as demo:
|
171 |
-
with gr.Column(elem_id="col-container"):
|
172 |
-
gr.HTML(f"""
|
173 |
-
<h2 style="text-align: center;">
|
174 |
-
PASD Magnify
|
175 |
-
</h2>
|
176 |
-
<p style="text-align: center;">
|
177 |
-
Pixel-Aware Stable Diffusion for Realistic Image Super-resolution and Personalized Stylization
|
178 |
-
</p>
|
179 |
-
<p id="project-links" align="center">
|
180 |
-
<a href='https://github.com/yangxy/PASD'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://huggingface.co/papers/2308.14469'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
|
181 |
-
</p>
|
182 |
-
<p style="margin:12px auto;display: flex;justify-content: center;">
|
183 |
-
<a href="https://huggingface.co/spaces/fffiloni/PASD?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space"></a>
|
184 |
-
</p>
|
185 |
-
|
186 |
-
""")
|
187 |
with gr.Row():
|
188 |
with gr.Column():
|
189 |
-
input_image = gr.
|
190 |
prompt_in = gr.Textbox(label="Prompt", value="Frog")
|
191 |
with gr.Accordion(label="Advanced settings", open=False):
|
192 |
added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece')
|
@@ -198,8 +183,7 @@ with gr.Blocks(css=css) as demo:
|
|
198 |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
199 |
submit_btn = gr.Button("Submit")
|
200 |
with gr.Column():
|
201 |
-
|
202 |
-
file_output = gr.File(label="Downloadable image result")
|
203 |
|
204 |
submit_btn.click(
|
205 |
fn = inference,
|
@@ -210,9 +194,6 @@ with gr.Blocks(css=css) as demo:
|
|
210 |
upsample_scale, condition_scale,
|
211 |
classifier_free_guidance, seed
|
212 |
],
|
213 |
-
outputs =
|
214 |
-
b_a_slider,
|
215 |
-
file_output
|
216 |
-
]
|
217 |
)
|
218 |
demo.queue().launch()
|
|
|
1 |
+
# import spaces
|
2 |
import os
|
3 |
import datetime
|
4 |
import einops
|
|
|
22 |
from myutils.wavelet_color_fix import wavelet_color_fix
|
23 |
from annotator.retinaface import RetinaFaceDetection
|
24 |
|
25 |
+
from io import BytesIO
|
26 |
+
import base64
|
27 |
+
import re
|
28 |
+
|
29 |
+
# Regex pattern to match data URI scheme
|
30 |
+
data_uri_pattern = re.compile(r'data:image/(png|jpeg|jpg|webp);base64,')
|
31 |
+
|
32 |
+
def readb64(b64):
|
33 |
+
# Remove any data URI scheme prefix with regex
|
34 |
+
b64 = data_uri_pattern.sub("", b64)
|
35 |
+
# Decode and open the image with PIL
|
36 |
+
img = Image.open(BytesIO(base64.b64decode(b64)))
|
37 |
+
return img
|
38 |
+
|
39 |
+
# convert from PIL to base64
|
40 |
+
def writeb64(image):
|
41 |
+
buffered = BytesIO()
|
42 |
+
image.save(buffered, format="PNG")
|
43 |
+
b64image = base64.b64encode(buffered.getvalue())
|
44 |
+
b64image_str = b64image.decode("utf-8")
|
45 |
+
return b64image_str
|
46 |
+
|
47 |
use_pasd_light = False
|
48 |
face_detector = RetinaFaceDetection()
|
49 |
|
|
|
106 |
#resized_img.save(output_path)
|
107 |
return resized_img
|
108 |
|
109 |
+
# @spaces.GPU(enable_queue=True)
|
110 |
def inference(input_image, prompt, a_prompt, n_prompt, denoise_steps, upscale, alpha, cfg, seed):
|
111 |
input_image = resize_image(input_image, 512)
|
112 |
process_size = 768
|
|
|
160 |
print(e)
|
161 |
image = Image.new(mode="RGB", size=(512, 512))
|
162 |
|
163 |
+
return writeb64(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
title = "Pixel-Aware Stable Diffusion for Real-ISR"
|
166 |
description = "Gradio Demo for PASD Real-ISR. To use it, simply upload your image, or click one of the examples to load them."
|
167 |
article = "<a href='https://github.com/yangxy/PASD' target='_blank'>Github Repo Pytorch</a>"
|
168 |
+
|
169 |
+
|
170 |
+
with gr.Blocks() as demo:
|
171 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
with gr.Row():
|
173 |
with gr.Column():
|
174 |
+
input_image = gr.Textbox()
|
175 |
prompt_in = gr.Textbox(label="Prompt", value="Frog")
|
176 |
with gr.Accordion(label="Advanced settings", open=False):
|
177 |
added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece')
|
|
|
183 |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
184 |
submit_btn = gr.Button("Submit")
|
185 |
with gr.Column():
|
186 |
+
output_image = gr.Textbox()
|
|
|
187 |
|
188 |
submit_btn.click(
|
189 |
fn = inference,
|
|
|
194 |
upsample_scale, condition_scale,
|
195 |
classifier_free_guidance, seed
|
196 |
],
|
197 |
+
outputs = output_image
|
|
|
|
|
|
|
198 |
)
|
199 |
demo.queue().launch()
|