Spaces:
Running
Running
import { | |
BackSide, | |
BoxGeometry, | |
Mesh, | |
ShaderMaterial, | |
UniformsUtils, | |
Vector3 | |
} from 'three'; | |
/** | |
* Based on "A Practical Analytic Model for Daylight" | |
* aka The Preetham Model, the de facto standard analytic skydome model | |
* https://www.researchgate.net/publication/220720443_A_Practical_Analytic_Model_for_Daylight | |
* | |
* First implemented by Simon Wallner | |
* http://simonwallner.at/project/atmospheric-scattering/ | |
* | |
* Improved by Martin Upitis | |
* http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR | |
* | |
* Three.js integration by zz85 http://twitter.com/blurspline | |
*/ | |
class Sky extends Mesh { | |
constructor() { | |
const shader = Sky.SkyShader; | |
const material = new ShaderMaterial( { | |
name: shader.name, | |
uniforms: UniformsUtils.clone( shader.uniforms ), | |
vertexShader: shader.vertexShader, | |
fragmentShader: shader.fragmentShader, | |
side: BackSide, | |
depthWrite: false | |
} ); | |
super( new BoxGeometry( 1, 1, 1 ), material ); | |
this.isSky = true; | |
} | |
} | |
Sky.SkyShader = { | |
name: 'SkyShader', | |
uniforms: { | |
'turbidity': { value: 2 }, | |
'rayleigh': { value: 1 }, | |
'mieCoefficient': { value: 0.005 }, | |
'mieDirectionalG': { value: 0.8 }, | |
'sunPosition': { value: new Vector3() }, | |
'up': { value: new Vector3( 0, 1, 0 ) } | |
}, | |
vertexShader: /* glsl */` | |
uniform vec3 sunPosition; | |
uniform float rayleigh; | |
uniform float turbidity; | |
uniform float mieCoefficient; | |
uniform vec3 up; | |
varying vec3 vWorldPosition; | |
varying vec3 vSunDirection; | |
varying float vSunfade; | |
varying vec3 vBetaR; | |
varying vec3 vBetaM; | |
varying float vSunE; | |
// constants for atmospheric scattering | |
const float e = 2.71828182845904523536028747135266249775724709369995957; | |
const float pi = 3.141592653589793238462643383279502884197169; | |
// wavelength of used primaries, according to preetham | |
const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 ); | |
// this pre-calculation replaces older TotalRayleigh(vec3 lambda) function: | |
// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn)) | |
const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 ); | |
// mie stuff | |
// K coefficient for the primaries | |
const float v = 4.0; | |
const vec3 K = vec3( 0.686, 0.678, 0.666 ); | |
// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K | |
const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 ); | |
// earth shadow hack | |
// cutoffAngle = pi / 1.95; | |
const float cutoffAngle = 1.6110731556870734; | |
const float steepness = 1.5; | |
const float EE = 1000.0; | |
float sunIntensity( float zenithAngleCos ) { | |
zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 ); | |
return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) ); | |
} | |
vec3 totalMie( float T ) { | |
float c = ( 0.2 * T ) * 10E-18; | |
return 0.434 * c * MieConst; | |
} | |
void main() { | |
vec4 worldPosition = modelMatrix * vec4( position, 1.0 ); | |
vWorldPosition = worldPosition.xyz; | |
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); | |
gl_Position.z = gl_Position.w; // set z to camera.far | |
vSunDirection = normalize( sunPosition ); | |
vSunE = sunIntensity( dot( vSunDirection, up ) ); | |
vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 ); | |
float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) ); | |
// extinction (absorption + out scattering) | |
// rayleigh coefficients | |
vBetaR = totalRayleigh * rayleighCoefficient; | |
// mie coefficients | |
vBetaM = totalMie( turbidity ) * mieCoefficient; | |
}`, | |
fragmentShader: /* glsl */` | |
varying vec3 vWorldPosition; | |
varying vec3 vSunDirection; | |
varying float vSunfade; | |
varying vec3 vBetaR; | |
varying vec3 vBetaM; | |
varying float vSunE; | |
uniform float mieDirectionalG; | |
uniform vec3 up; | |
// constants for atmospheric scattering | |
const float pi = 3.141592653589793238462643383279502884197169; | |
const float n = 1.0003; // refractive index of air | |
const float N = 2.545E25; // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius) | |
// optical length at zenith for molecules | |
const float rayleighZenithLength = 8.4E3; | |
const float mieZenithLength = 1.25E3; | |
// 66 arc seconds -> degrees, and the cosine of that | |
const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324; | |
// 3.0 / ( 16.0 * pi ) | |
const float THREE_OVER_SIXTEENPI = 0.05968310365946075; | |
// 1.0 / ( 4.0 * pi ) | |
const float ONE_OVER_FOURPI = 0.07957747154594767; | |
float rayleighPhase( float cosTheta ) { | |
return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) ); | |
} | |
float hgPhase( float cosTheta, float g ) { | |
float g2 = pow( g, 2.0 ); | |
float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 ); | |
return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse ); | |
} | |
void main() { | |
vec3 direction = normalize( vWorldPosition - cameraPosition ); | |
// optical length | |
// cutoff angle at 90 to avoid singularity in next formula. | |
float zenithAngle = acos( max( 0.0, dot( up, direction ) ) ); | |
float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) ); | |
float sR = rayleighZenithLength * inverse; | |
float sM = mieZenithLength * inverse; | |
// combined extinction factor | |
vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) ); | |
// in scattering | |
float cosTheta = dot( direction, vSunDirection ); | |
float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 ); | |
vec3 betaRTheta = vBetaR * rPhase; | |
float mPhase = hgPhase( cosTheta, mieDirectionalG ); | |
vec3 betaMTheta = vBetaM * mPhase; | |
vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) ); | |
Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) ); | |
// nightsky | |
float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2] | |
float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2] | |
vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 ); | |
vec3 L0 = vec3( 0.1 ) * Fex; | |
// composition + solar disc | |
float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta ); | |
L0 += ( vSunE * 19000.0 * Fex ) * sundisk; | |
vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 ); | |
vec3 retColor = pow( texColor, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) ); | |
gl_FragColor = vec4( retColor, 1.0 ); | |
#include <tonemapping_fragment> | |
#include <colorspace_fragment> | |
}` | |
}; | |
export { Sky }; | |