Spaces:
Running
Running
File size: 11,216 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import {
Color,
FrontSide,
Matrix4,
Mesh,
PerspectiveCamera,
Plane,
ShaderMaterial,
UniformsLib,
UniformsUtils,
Vector3,
Vector4,
WebGLRenderTarget
} from 'three';
/**
* Work based on :
* https://github.com/Slayvin: Flat mirror for three.js
* https://home.adelphi.edu/~stemkoski/ : An implementation of water shader based on the flat mirror
* http://29a.ch/ && http://29a.ch/slides/2012/webglwater/ : Water shader explanations in WebGL
*/
class Water extends Mesh {
constructor( geometry, options = {} ) {
super( geometry );
this.isWater = true;
const scope = this;
const textureWidth = options.textureWidth !== undefined ? options.textureWidth : 512;
const textureHeight = options.textureHeight !== undefined ? options.textureHeight : 512;
const clipBias = options.clipBias !== undefined ? options.clipBias : 0.0;
const alpha = options.alpha !== undefined ? options.alpha : 1.0;
const time = options.time !== undefined ? options.time : 0.0;
const normalSampler = options.waterNormals !== undefined ? options.waterNormals : null;
const sunDirection = options.sunDirection !== undefined ? options.sunDirection : new Vector3( 0.70707, 0.70707, 0.0 );
const sunColor = new Color( options.sunColor !== undefined ? options.sunColor : 0xffffff );
const waterColor = new Color( options.waterColor !== undefined ? options.waterColor : 0x7F7F7F );
const eye = options.eye !== undefined ? options.eye : new Vector3( 0, 0, 0 );
const distortionScale = options.distortionScale !== undefined ? options.distortionScale : 20.0;
const side = options.side !== undefined ? options.side : FrontSide;
const fog = options.fog !== undefined ? options.fog : false;
//
const mirrorPlane = new Plane();
const normal = new Vector3();
const mirrorWorldPosition = new Vector3();
const cameraWorldPosition = new Vector3();
const rotationMatrix = new Matrix4();
const lookAtPosition = new Vector3( 0, 0, - 1 );
const clipPlane = new Vector4();
const view = new Vector3();
const target = new Vector3();
const q = new Vector4();
const textureMatrix = new Matrix4();
const mirrorCamera = new PerspectiveCamera();
const renderTarget = new WebGLRenderTarget( textureWidth, textureHeight );
const mirrorShader = {
name: 'MirrorShader',
uniforms: UniformsUtils.merge( [
UniformsLib[ 'fog' ],
UniformsLib[ 'lights' ],
{
'normalSampler': { value: null },
'mirrorSampler': { value: null },
'alpha': { value: 1.0 },
'time': { value: 0.0 },
'size': { value: 1.0 },
'distortionScale': { value: 20.0 },
'textureMatrix': { value: new Matrix4() },
'sunColor': { value: new Color( 0x7F7F7F ) },
'sunDirection': { value: new Vector3( 0.70707, 0.70707, 0 ) },
'eye': { value: new Vector3() },
'waterColor': { value: new Color( 0x555555 ) }
}
] ),
vertexShader: /* glsl */`
uniform mat4 textureMatrix;
uniform float time;
varying vec4 mirrorCoord;
varying vec4 worldPosition;
#include <common>
#include <fog_pars_vertex>
#include <shadowmap_pars_vertex>
#include <logdepthbuf_pars_vertex>
void main() {
mirrorCoord = modelMatrix * vec4( position, 1.0 );
worldPosition = mirrorCoord.xyzw;
mirrorCoord = textureMatrix * mirrorCoord;
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
gl_Position = projectionMatrix * mvPosition;
#include <beginnormal_vertex>
#include <defaultnormal_vertex>
#include <logdepthbuf_vertex>
#include <fog_vertex>
#include <shadowmap_vertex>
}`,
fragmentShader: /* glsl */`
uniform sampler2D mirrorSampler;
uniform float alpha;
uniform float time;
uniform float size;
uniform float distortionScale;
uniform sampler2D normalSampler;
uniform vec3 sunColor;
uniform vec3 sunDirection;
uniform vec3 eye;
uniform vec3 waterColor;
varying vec4 mirrorCoord;
varying vec4 worldPosition;
vec4 getNoise( vec2 uv ) {
vec2 uv0 = ( uv / 103.0 ) + vec2(time / 17.0, time / 29.0);
vec2 uv1 = uv / 107.0-vec2( time / -19.0, time / 31.0 );
vec2 uv2 = uv / vec2( 8907.0, 9803.0 ) + vec2( time / 101.0, time / 97.0 );
vec2 uv3 = uv / vec2( 1091.0, 1027.0 ) - vec2( time / 109.0, time / -113.0 );
vec4 noise = texture2D( normalSampler, uv0 ) +
texture2D( normalSampler, uv1 ) +
texture2D( normalSampler, uv2 ) +
texture2D( normalSampler, uv3 );
return noise * 0.5 - 1.0;
}
void sunLight( const vec3 surfaceNormal, const vec3 eyeDirection, float shiny, float spec, float diffuse, inout vec3 diffuseColor, inout vec3 specularColor ) {
vec3 reflection = normalize( reflect( -sunDirection, surfaceNormal ) );
float direction = max( 0.0, dot( eyeDirection, reflection ) );
specularColor += pow( direction, shiny ) * sunColor * spec;
diffuseColor += max( dot( sunDirection, surfaceNormal ), 0.0 ) * sunColor * diffuse;
}
#include <common>
#include <packing>
#include <bsdfs>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <lights_pars_begin>
#include <shadowmap_pars_fragment>
#include <shadowmask_pars_fragment>
void main() {
#include <logdepthbuf_fragment>
vec4 noise = getNoise( worldPosition.xz * size );
vec3 surfaceNormal = normalize( noise.xzy * vec3( 1.5, 1.0, 1.5 ) );
vec3 diffuseLight = vec3(0.0);
vec3 specularLight = vec3(0.0);
vec3 worldToEye = eye-worldPosition.xyz;
vec3 eyeDirection = normalize( worldToEye );
sunLight( surfaceNormal, eyeDirection, 100.0, 2.0, 0.5, diffuseLight, specularLight );
float distance = length(worldToEye);
vec2 distortion = surfaceNormal.xz * ( 0.001 + 1.0 / distance ) * distortionScale;
vec3 reflectionSample = vec3( texture2D( mirrorSampler, mirrorCoord.xy / mirrorCoord.w + distortion ) );
float theta = max( dot( eyeDirection, surfaceNormal ), 0.0 );
float rf0 = 0.3;
float reflectance = rf0 + ( 1.0 - rf0 ) * pow( ( 1.0 - theta ), 5.0 );
vec3 scatter = max( 0.0, dot( surfaceNormal, eyeDirection ) ) * waterColor;
vec3 albedo = mix( ( sunColor * diffuseLight * 0.3 + scatter ) * getShadowMask(), ( vec3( 0.1 ) + reflectionSample * 0.9 + reflectionSample * specularLight ), reflectance);
vec3 outgoingLight = albedo;
gl_FragColor = vec4( outgoingLight, alpha );
#include <tonemapping_fragment>
#include <colorspace_fragment>
#include <fog_fragment>
}`
};
const material = new ShaderMaterial( {
name: mirrorShader.name,
uniforms: UniformsUtils.clone( mirrorShader.uniforms ),
vertexShader: mirrorShader.vertexShader,
fragmentShader: mirrorShader.fragmentShader,
lights: true,
side: side,
fog: fog
} );
material.uniforms[ 'mirrorSampler' ].value = renderTarget.texture;
material.uniforms[ 'textureMatrix' ].value = textureMatrix;
material.uniforms[ 'alpha' ].value = alpha;
material.uniforms[ 'time' ].value = time;
material.uniforms[ 'normalSampler' ].value = normalSampler;
material.uniforms[ 'sunColor' ].value = sunColor;
material.uniforms[ 'waterColor' ].value = waterColor;
material.uniforms[ 'sunDirection' ].value = sunDirection;
material.uniforms[ 'distortionScale' ].value = distortionScale;
material.uniforms[ 'eye' ].value = eye;
scope.material = material;
scope.onBeforeRender = function ( renderer, scene, camera ) {
mirrorWorldPosition.setFromMatrixPosition( scope.matrixWorld );
cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );
rotationMatrix.extractRotation( scope.matrixWorld );
normal.set( 0, 0, 1 );
normal.applyMatrix4( rotationMatrix );
view.subVectors( mirrorWorldPosition, cameraWorldPosition );
// Avoid rendering when mirror is facing away
if ( view.dot( normal ) > 0 ) return;
view.reflect( normal ).negate();
view.add( mirrorWorldPosition );
rotationMatrix.extractRotation( camera.matrixWorld );
lookAtPosition.set( 0, 0, - 1 );
lookAtPosition.applyMatrix4( rotationMatrix );
lookAtPosition.add( cameraWorldPosition );
target.subVectors( mirrorWorldPosition, lookAtPosition );
target.reflect( normal ).negate();
target.add( mirrorWorldPosition );
mirrorCamera.position.copy( view );
mirrorCamera.up.set( 0, 1, 0 );
mirrorCamera.up.applyMatrix4( rotationMatrix );
mirrorCamera.up.reflect( normal );
mirrorCamera.lookAt( target );
mirrorCamera.far = camera.far; // Used in WebGLBackground
mirrorCamera.updateMatrixWorld();
mirrorCamera.projectionMatrix.copy( camera.projectionMatrix );
// Update the texture matrix
textureMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
textureMatrix.multiply( mirrorCamera.projectionMatrix );
textureMatrix.multiply( mirrorCamera.matrixWorldInverse );
// Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html
// Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
mirrorPlane.setFromNormalAndCoplanarPoint( normal, mirrorWorldPosition );
mirrorPlane.applyMatrix4( mirrorCamera.matrixWorldInverse );
clipPlane.set( mirrorPlane.normal.x, mirrorPlane.normal.y, mirrorPlane.normal.z, mirrorPlane.constant );
const projectionMatrix = mirrorCamera.projectionMatrix;
q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
q.z = - 1.0;
q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];
// Calculate the scaled plane vector
clipPlane.multiplyScalar( 2.0 / clipPlane.dot( q ) );
// Replacing the third row of the projection matrix
projectionMatrix.elements[ 2 ] = clipPlane.x;
projectionMatrix.elements[ 6 ] = clipPlane.y;
projectionMatrix.elements[ 10 ] = clipPlane.z + 1.0 - clipBias;
projectionMatrix.elements[ 14 ] = clipPlane.w;
eye.setFromMatrixPosition( camera.matrixWorld );
// Render
const currentRenderTarget = renderer.getRenderTarget();
const currentXrEnabled = renderer.xr.enabled;
const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
scope.visible = false;
renderer.xr.enabled = false; // Avoid camera modification and recursion
renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows
renderer.setRenderTarget( renderTarget );
renderer.state.buffers.depth.setMask( true ); // make sure the depth buffer is writable so it can be properly cleared, see #18897
if ( renderer.autoClear === false ) renderer.clear();
renderer.render( scene, mirrorCamera );
scope.visible = true;
renderer.xr.enabled = currentXrEnabled;
renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
renderer.setRenderTarget( currentRenderTarget );
// Restore viewport
const viewport = camera.viewport;
if ( viewport !== undefined ) {
renderer.state.viewport( viewport );
}
};
}
}
export { Water };
|