Spaces:
Running
Running
File size: 7,043 Bytes
a28eca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import {
Color,
Matrix4,
Mesh,
PerspectiveCamera,
Plane,
ShaderMaterial,
UniformsUtils,
Vector3,
Vector4,
WebGLRenderTarget,
HalfFloatType
} from 'three';
class Reflector extends Mesh {
constructor( geometry, options = {} ) {
super( geometry );
this.isReflector = true;
this.type = 'Reflector';
this.camera = new PerspectiveCamera();
const scope = this;
const color = ( options.color !== undefined ) ? new Color( options.color ) : new Color( 0x7F7F7F );
const textureWidth = options.textureWidth || 512;
const textureHeight = options.textureHeight || 512;
const clipBias = options.clipBias || 0;
const shader = options.shader || Reflector.ReflectorShader;
const multisample = ( options.multisample !== undefined ) ? options.multisample : 4;
//
const reflectorPlane = new Plane();
const normal = new Vector3();
const reflectorWorldPosition = new Vector3();
const cameraWorldPosition = new Vector3();
const rotationMatrix = new Matrix4();
const lookAtPosition = new Vector3( 0, 0, - 1 );
const clipPlane = new Vector4();
const view = new Vector3();
const target = new Vector3();
const q = new Vector4();
const textureMatrix = new Matrix4();
const virtualCamera = this.camera;
const renderTarget = new WebGLRenderTarget( textureWidth, textureHeight, { samples: multisample, type: HalfFloatType } );
const material = new ShaderMaterial( {
name: ( shader.name !== undefined ) ? shader.name : 'unspecified',
uniforms: UniformsUtils.clone( shader.uniforms ),
fragmentShader: shader.fragmentShader,
vertexShader: shader.vertexShader
} );
material.uniforms[ 'tDiffuse' ].value = renderTarget.texture;
material.uniforms[ 'color' ].value = color;
material.uniforms[ 'textureMatrix' ].value = textureMatrix;
this.material = material;
this.onBeforeRender = function ( renderer, scene, camera ) {
reflectorWorldPosition.setFromMatrixPosition( scope.matrixWorld );
cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );
rotationMatrix.extractRotation( scope.matrixWorld );
normal.set( 0, 0, 1 );
normal.applyMatrix4( rotationMatrix );
view.subVectors( reflectorWorldPosition, cameraWorldPosition );
// Avoid rendering when reflector is facing away
if ( view.dot( normal ) > 0 ) return;
view.reflect( normal ).negate();
view.add( reflectorWorldPosition );
rotationMatrix.extractRotation( camera.matrixWorld );
lookAtPosition.set( 0, 0, - 1 );
lookAtPosition.applyMatrix4( rotationMatrix );
lookAtPosition.add( cameraWorldPosition );
target.subVectors( reflectorWorldPosition, lookAtPosition );
target.reflect( normal ).negate();
target.add( reflectorWorldPosition );
virtualCamera.position.copy( view );
virtualCamera.up.set( 0, 1, 0 );
virtualCamera.up.applyMatrix4( rotationMatrix );
virtualCamera.up.reflect( normal );
virtualCamera.lookAt( target );
virtualCamera.far = camera.far; // Used in WebGLBackground
virtualCamera.updateMatrixWorld();
virtualCamera.projectionMatrix.copy( camera.projectionMatrix );
// Update the texture matrix
textureMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
textureMatrix.multiply( virtualCamera.projectionMatrix );
textureMatrix.multiply( virtualCamera.matrixWorldInverse );
textureMatrix.multiply( scope.matrixWorld );
// Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html
// Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf
reflectorPlane.setFromNormalAndCoplanarPoint( normal, reflectorWorldPosition );
reflectorPlane.applyMatrix4( virtualCamera.matrixWorldInverse );
clipPlane.set( reflectorPlane.normal.x, reflectorPlane.normal.y, reflectorPlane.normal.z, reflectorPlane.constant );
const projectionMatrix = virtualCamera.projectionMatrix;
q.x = ( Math.sign( clipPlane.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
q.y = ( Math.sign( clipPlane.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
q.z = - 1.0;
q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];
// Calculate the scaled plane vector
clipPlane.multiplyScalar( 2.0 / clipPlane.dot( q ) );
// Replacing the third row of the projection matrix
projectionMatrix.elements[ 2 ] = clipPlane.x;
projectionMatrix.elements[ 6 ] = clipPlane.y;
projectionMatrix.elements[ 10 ] = clipPlane.z + 1.0 - clipBias;
projectionMatrix.elements[ 14 ] = clipPlane.w;
// Render
scope.visible = false;
const currentRenderTarget = renderer.getRenderTarget();
const currentXrEnabled = renderer.xr.enabled;
const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
renderer.xr.enabled = false; // Avoid camera modification
renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows
renderer.setRenderTarget( renderTarget );
renderer.state.buffers.depth.setMask( true ); // make sure the depth buffer is writable so it can be properly cleared, see #18897
if ( renderer.autoClear === false ) renderer.clear();
renderer.render( scene, virtualCamera );
renderer.xr.enabled = currentXrEnabled;
renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
renderer.setRenderTarget( currentRenderTarget );
// Restore viewport
const viewport = camera.viewport;
if ( viewport !== undefined ) {
renderer.state.viewport( viewport );
}
scope.visible = true;
};
this.getRenderTarget = function () {
return renderTarget;
};
this.dispose = function () {
renderTarget.dispose();
scope.material.dispose();
};
}
}
Reflector.ReflectorShader = {
name: 'ReflectorShader',
uniforms: {
'color': {
value: null
},
'tDiffuse': {
value: null
},
'textureMatrix': {
value: null
}
},
vertexShader: /* glsl */`
uniform mat4 textureMatrix;
varying vec4 vUv;
#include <common>
#include <logdepthbuf_pars_vertex>
void main() {
vUv = textureMatrix * vec4( position, 1.0 );
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
#include <logdepthbuf_vertex>
}`,
fragmentShader: /* glsl */`
uniform vec3 color;
uniform sampler2D tDiffuse;
varying vec4 vUv;
#include <logdepthbuf_pars_fragment>
float blendOverlay( float base, float blend ) {
return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );
}
vec3 blendOverlay( vec3 base, vec3 blend ) {
return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );
}
void main() {
#include <logdepthbuf_fragment>
vec4 base = texture2DProj( tDiffuse, vUv );
gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );
#include <tonemapping_fragment>
#include <colorspace_fragment>
}`
};
export { Reflector };
|