jaydemirandilla commited on
Commit
3ef561d
·
verified ·
1 Parent(s): 6e8ccd3

Delete denseNet121.py

Browse files
Files changed (1) hide show
  1. denseNet121.py +0 -67
denseNet121.py DELETED
@@ -1,67 +0,0 @@
1
- import numpy as np
2
- import gradio as gr
3
- import tensorflow as tf
4
- from PIL import Image, ImageDraw, ImageFont
5
-
6
- # Function to load the modified model without recompiling
7
- def load_modified_model(model_path):
8
- return tf.keras.models.load_model(model_path)
9
-
10
- # Load the trained model
11
- print("Loading model...")
12
- model = load_modified_model('denseNet121.h5')
13
- print("Model loaded successfully.")
14
-
15
- # Function to classify food vs. non-food image using the loaded model
16
- def classify_food_vs_nonfood(image):
17
- try:
18
- # Preprocess image
19
- image_size = (224, 224)
20
- image = image.resize(image_size)
21
- image_np = np.array(image) / 255.0
22
- image_np_expanded = np.expand_dims(image_np, axis=0)
23
-
24
- # Make prediction
25
- prediction = model.predict(image_np_expanded)
26
- final_prediction = np.argmax(prediction[0])
27
-
28
- # Display result
29
- results = {0: 'Food', 1: 'Non Food'}
30
- label = results[final_prediction]
31
-
32
- # Create a draw object
33
- draw = ImageDraw.Draw(image)
34
-
35
- # Specify font and size
36
- font = ImageFont.load_default()
37
-
38
- # Get text size
39
- text_font = ImageFont.truetype("Hack-Regular.ttf", 24)
40
- text_bbox = draw.textbbox((0, 0), label, font=text_font)
41
- text_size = (text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1])
42
-
43
- # Calculate text position
44
- text_position = ((image_size[0] - text_size[0]) // 2, 10)
45
-
46
- # Add text to the image
47
- draw.text(text_position, label, fill=(255, 0, 0), font=text_font)
48
-
49
- # Return modified image
50
- return image
51
- except Exception as e:
52
- print("Error processing image:", e)
53
-
54
- # Define inputs for Gradio interface
55
- image_input = gr.inputs.Image(shape=(224, 224), type="pil")
56
-
57
- # Define example images as file paths
58
- ex_image_paths = ['image_1.jpeg', 'image_2.jpeg', 'image_3.jpeg', 'image_4.jpg', 'image_5.jpg']
59
-
60
- # Launch Gradio interface with example images
61
- food_vs_nonfood_interface = gr.Interface(classify_food_vs_nonfood,
62
- inputs=image_input,
63
- outputs="image",
64
- title="Food vs NonFood Classifier",
65
- description="Upload an image to classify whether it's food or non-food.",
66
- examples=ex_image_paths)
67
- food_vs_nonfood_interface.launch(inline=False)