File size: 9,939 Bytes
967929f
1fc474a
 
 
967929f
 
1fc474a
 
967929f
1fc474a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682a749
1fc474a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682a749
1fc474a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682a749
1fc474a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682a749
1fc474a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
682a749
1fc474a
 
 
 
 
 
 
682a749
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from llama_index.indices.managed.vectara import VectaraIndex
from dotenv import load_dotenv
import os
from docx import Document
from llama_index.llms.together import TogetherLLM
from llama_index.core.llms import ChatMessage, MessageRole
from Bio import Entrez 
import ssl
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import streamlit as st
from googleapiclient.discovery import build
from typing import List, Optional

load_dotenv()

os.environ["VECTARA_INDEX_API_KEY"] = os.getenv("VECTARA_INDEX_API_KEY", "zwt_Vo9cpGzm6QVtABcdnzVq6QXLdGIP4YAcvcyEAA")
os.environ["VECTARA_QUERY_API_KEY"] = os.getenv("VECTARA_QUERY_API_KEY", "zqt_Vo9cpBoyEjUQdcTVo2W5hmMKPueBUroBLoGwNQ")
os.environ["VECTARA_API_KEY"] = os.getenv("VECTARA_API_KEY", "zut_Vo9cpHni2hWF_DPJAXmRFKkWzRTWbi-8JwnSxA")
os.environ["VECTARA_CORPUS_ID"] = os.getenv("VECTARA_CORPUS_ID", "2")
os.environ["VECTARA_CUSTOMER_ID"] = os.getenv("VECTARA_CUSTOMER_ID", "1452235940")
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b")
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyALmmMjvmrmHGtjjuPLEMy6Bp2qgMQJ3Ck")

index = VectaraIndex()
endpoint = 'https://api.together.xyz/inference'

def search_pubmed(query: str) -> Optional[List[str]]:
    Entrez.email = "[email protected]"  
    try:
        ssl._create_default_https_context = ssl._create_unverified_context
        handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
        record = Entrez.read(handle)
        id_list = record["IdList"]
        if not id_list:
            return None
        handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
        articles = Entrez.read(handle)
        results = []
        for article in articles['PubmedArticle']:
            try:
                medline_citation = article['MedlineCitation']
                article_data = medline_citation['Article']
                title = article_data['ArticleTitle']
                abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]
                result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
                result += f"**Link:** https://pubmed.ncbi.nlm.nih.gov/{medline_citation['PMID']}\n\n"
                results.append(result)
            except KeyError as e:
                print(f"Error parsing article: {article}, Error: {e}")
        return results
    except Exception as e:
        print(f"Error accessing PubMed: {e}")
        return None

def chat_with_pubmed(article_text, article_link):
    try:
        llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
        messages = [
            ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link),
            ChatMessage(role=MessageRole.USER, content=article_text)
        ]
        response = llm.chat(messages)
        return str(response) if response else "I'm sorry, I couldn't generate a summary for this article."
    except Exception as e:
        print(f"Error in chat_with_pubmed: {e}")
        return "An error occurred while generating a summary."

def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
    try:
        service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])
        res = service.cse().list(q=query, cx="6128965e5bcae442b", num=num_results).execute()
        if "items" not in res:
            return None
        results = []
        for item in res["items"]:
            title = item["title"]
            link = item["link"]
            snippet = item["snippet"]
            result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n"
            results.append(result)
        return results
    except Exception as e:
        print(f"Error performing web search: {e}")
        return None

def NEXUS_chatbot(user_input, chat_history=None):
    if chat_history is None:
        chat_history = []
    response_parts = []
    try:
        try:
            query_str = user_input
            response = index.as_query_engine().query(query_str)
            response_parts.append(f"**NEXUS Vectara Knowledge Base Response:**\n{response.response}")
        except Exception as e:
            print(f"Error in Vectara search: {e}")
            response_parts.append("Vectara knowledge base is currently unavailable.")

        pubmed_results = search_pubmed(user_input)
        if pubmed_results:
            response_parts.append("**PubMed Articles (Chat & Summarize):**")
            for article_text in pubmed_results:
                title, abstract, link = article_text.split("\n")[:3]
                chat_summary = chat_with_pubmed(abstract, link)
                response_parts.append(f"{title}\n{chat_summary}\n{link}\n")
        else:
            response_parts.append("No relevant PubMed articles found.")

        web_results = search_web(user_input)
        if web_results:
            response_parts.append("**Web Search Results:**")
            response_parts.extend(web_results)
        else:
            response_parts.append("No relevant web search results found.")

        response_text = "\n\n".join(response_parts)
    except Exception as e:
        print(f"Error in chatbot: {e}")
        response_text = f"An error occurred: {str(e)}. Please try again later or rephrase your question."

    chat_history.append((user_input, response_text))
    return response_text, chat_history

def show_info_popup():
    with st.expander("How to use NEXUS"):
        st.write("""
        **NEXUS is an AI-powered chatbot designed to assist with medical information.**
        **Capabilities:**
        *   **Answers general medical questions:** NEXUS utilizes a curated medical knowledge base to provide answers to a wide range of health-related inquiries.
        *   **Summarizes relevant research articles from PubMed:** The chatbot can retrieve and summarize research articles from the PubMed database, making complex scientific information more accessible.
        *   **Provides insights from a curated medical knowledge base:** Beyond simple answers, NEXUS offers additional insights and context from its knowledge base to enhance understanding. 
        *   **Perform safe web searches related to your query:** The chatbot can perform web searches using the Google Search API, ensuring the safety and relevance of the results.
        **Limitations:**
        *   **Not a substitute for professional medical advice:** NEXUS is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice.
        *   **General knowledge and educational purposes:** The information provided by NEXUS is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations.
        *   **Under development:** NEXUS is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources.
        **How to use:**
        1.  **Type your medical question in the text box.**
        2.  **NEXUS will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results.
        3.  **You can continue the conversation by asking follow-up questions or providing additional context.** This helps NEXUS refine its search and offer more tailored information.
        4.  **In case NEXUS doesn't show the output, please check your internet connection or rerun the same command.**
        """)

if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []

def display_chat_history():
    for user_msg, bot_msg in st.session_state.chat_history:
        st.info(f"**You:** {user_msg}")
        st.success(f"**NEXUS:** {bot_msg}")

def clear_chat():
    st.session_state.chat_history = []

def main():
    st.set_page_config(page_title="NEXUS Chatbot", layout="wide")
    st.markdown(
        """
        <style>
        .css-18e3th9 {
            padding-top: 2rem;
            padding-right: 1rem;
            padding-bottom: 2rem;
            padding-left: 1rem;
        }
        .stButton>button {
            background-color: #4CAF50;
            color: white;
        }
        body {
            background-color: #F0FDF4;
            color: #333333;
        }
        .stMarkdown h1, .stMarkdown h2, .stMarkdown h3, .stMarkdown h4, .stMarkdown h5, .stMarkdown h6 {
            color: #388E3C;
        }
        </style>
        """,
        unsafe_allow_html=True,
    )
    st.title("NEXUS Chatbot")
    st.write("Ask your medical questions and get reliable information!")
    example_questions = [
        "What are the symptoms of COVID-19?",
        "How can I manage my diabetes?",
        "What are the potential side effects of ibuprofen?",
        "What lifestyle changes can help prevent heart disease?"
    ]
    st.sidebar.header("Example Questions")
    for question in example_questions:
        st.sidebar.write(question)
    output_container = st.container()
    input_container = st.container()
    with input_container:
        user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...")
        new_chat_button = st.button("Start New Chat")
        if new_chat_button:
            st.session_state.chat_history = []
    if user_input:
        response, st.session_state.chat_history = NEXUS_chatbot(user_input, st.session_state.chat_history)
        with output_container:
            display_chat_history()
    show_info_popup()

if __name__ == "__main__":
    main()