File size: 3,750 Bytes
d453003
 
 
 
 
 
 
89a037c
d453003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a037c
d453003
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import streamlit as st
import cv2
import tempfile
import numpy as np
import torch
from collections import deque
from transformers import AutoFeatureExtractor, AutoModelForVideoClassification
from streamlit_webrtc import webrtc_streamer, VideoTransformerBase, RTCConfiguration, WebRtcMode

# Constants
NUM_FRAMES = 16
MODEL_NAME = "jatinmehra/Accident-Detection-using-Dashcam"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

@st.cache_resource
def load_model_and_extractor():
    extractor = AutoFeatureExtractor.from_pretrained("facebook/timesformer-base-finetuned-k400")
    model = AutoModelForVideoClassification.from_pretrained(
        MODEL_NAME,
        num_labels=2,
        ignore_mismatched_sizes=True
    ).to(DEVICE)
    model.eval()
    return extractor, model

extractor, model = load_model_and_extractor()

st.title("Dashcam Accident Predictor")
st.write("**higher score = higher accident probability**")

# Function to run inference on a saved video file
def run_inference_on_video(video_path):
    cap = cv2.VideoCapture(video_path)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = cap.get(cv2.CAP_PROP_FPS) or 30
    if total_frames <= 0:
        st.error("Failed to read video frames.")
        return None
    
    # Uniform sampling
    indices = np.linspace(0, total_frames-1, NUM_FRAMES, dtype=int)
    frames = []
    for idx in indices:
        cap.set(cv2.CAP_PROP_POS_FRAMES, int(idx))
        ret, frame = cap.read()
        if not ret:
            frames.append(np.zeros((224,224,3), dtype=np.uint8))
        else:
            rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            resized = cv2.resize(rgb, (224,224))
            frames.append(resized)
    cap.release()

    # Preprocess and predict
    inputs = extractor(frames, return_tensors="pt")
    pixel_values = inputs['pixel_values'].to(DEVICE)
    with torch.no_grad():
        outputs = model(pixel_values=pixel_values).logits
        prob = torch.softmax(outputs, dim=1)[0,1].item()
    return prob

# UI Selection
source = st.radio("Choose input source", ("Upload Video", "Webcam"))

if source == "Upload Video":
    uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
    if uploaded_file is not None:
        tfile = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
        tfile.write(uploaded_file.read())
        st.video(uploaded_file)
        st.write("Running inference...")
        score = run_inference_on_video(tfile.name)
        if score is not None:
            st.success(f"Accident probability: {score:.2f}")

else:
    # Webcam stream processing
    class AcciTransformer(VideoTransformerBase):
        def __init__(self):
            self.buffer = deque(maxlen=NUM_FRAMES)

        def transform(self, frame):
            img = frame.to_ndarray(format="bgr24")
            rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            resized = cv2.resize(rgb, (224,224))
            self.buffer.append(resized)
            if len(self.buffer) == NUM_FRAMES:
                inputs = extractor(list(self.buffer), return_tensors="pt")
                pixel_values = inputs['pixel_values'].to(DEVICE)
                with torch.no_grad():
                    outputs = model(pixel_values=pixel_values).logits
                    prob = torch.softmax(outputs, dim=1)[0,1].item()
                cv2.putText(img, f"Prob: {prob:.2f}", (10,30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)
            return img

    webrtc_streamer(
        key="dashcam-webcam",
        mode=WebRtcMode.RECVONLY,
        rtc_configuration=RTCConfiguration({
            "iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]
        }),
        video_transformer_factory=AcciTransformer
    )