Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
8 |
+
import json
|
9 |
+
|
10 |
+
# Load ImageNet class labels
|
11 |
+
LABELS_URL = "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json"
|
12 |
+
response = requests.get(LABELS_URL)
|
13 |
+
labels = json.loads(response.text)
|
14 |
+
|
15 |
+
def load_model():
|
16 |
+
"""
|
17 |
+
Load model and processor from Hugging Face Hub
|
18 |
+
"""
|
19 |
+
model_id = "jatingocodeo/ImageNet" # Updated model repository ID
|
20 |
+
model = AutoModelForImageClassification.from_pretrained(model_id)
|
21 |
+
processor = AutoImageProcessor.from_pretrained(model_id)
|
22 |
+
return model, processor
|
23 |
+
|
24 |
+
def predict(image):
|
25 |
+
"""
|
26 |
+
Make prediction on input image
|
27 |
+
"""
|
28 |
+
if image is None:
|
29 |
+
return None
|
30 |
+
|
31 |
+
try:
|
32 |
+
# Load model and processor (with caching)
|
33 |
+
model, processor = load_model()
|
34 |
+
model.eval()
|
35 |
+
|
36 |
+
# Process image
|
37 |
+
inputs = processor(image, return_tensors="pt")
|
38 |
+
|
39 |
+
# Get predictions
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = model(**inputs)
|
42 |
+
logits = outputs.logits
|
43 |
+
|
44 |
+
# Get probabilities and classes
|
45 |
+
probs = torch.nn.functional.softmax(logits, dim=1)[0]
|
46 |
+
top_probs, top_indices = torch.topk(probs, k=5)
|
47 |
+
|
48 |
+
# Format results
|
49 |
+
results = {}
|
50 |
+
for prob, idx in zip(top_probs, top_indices):
|
51 |
+
label = labels[idx.item()]
|
52 |
+
confidence = prob.item() * 100
|
53 |
+
results[label] = confidence
|
54 |
+
|
55 |
+
return results
|
56 |
+
except Exception as e:
|
57 |
+
return f"Error processing image: {str(e)}"
|
58 |
+
|
59 |
+
# Create Gradio interface
|
60 |
+
title = "ImageNet Classifier"
|
61 |
+
description = """
|
62 |
+
## ResNet50 ImageNet Classifier
|
63 |
+
|
64 |
+
This model classifies images into 1000 ImageNet categories. Upload an image or use one of the example images to get predictions.
|
65 |
+
|
66 |
+
### Instructions:
|
67 |
+
1. Upload an image using the input box below
|
68 |
+
2. The model will predict the top 5 classes for the image
|
69 |
+
3. Results show class names and confidence scores
|
70 |
+
|
71 |
+
### Model Details:
|
72 |
+
- Architecture: ResNet50
|
73 |
+
- Dataset: ImageNet
|
74 |
+
- Input Size: 224x224
|
75 |
+
- Number of Classes: 1000
|
76 |
+
"""
|
77 |
+
|
78 |
+
# Example images
|
79 |
+
examples = [
|
80 |
+
"examples/dog.jpg",
|
81 |
+
"examples/cat.jpg",
|
82 |
+
"examples/bird.jpg",
|
83 |
+
"examples/car.jpg",
|
84 |
+
"examples/flower.jpg"
|
85 |
+
]
|
86 |
+
|
87 |
+
# Create the interface
|
88 |
+
iface = gr.Interface(
|
89 |
+
fn=predict,
|
90 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
91 |
+
outputs=gr.Label(num_top_classes=5, label="Predictions"),
|
92 |
+
title=title,
|
93 |
+
description=description,
|
94 |
+
examples=examples,
|
95 |
+
theme=gr.themes.Soft(),
|
96 |
+
allow_flagging="never"
|
97 |
+
)
|
98 |
+
|
99 |
+
# Launch the app
|
100 |
+
iface.launch()
|