Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,85 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
from
|
5 |
-
from huggingface_hub import hf_hub_download
|
6 |
-
import json
|
7 |
|
8 |
# Cache for model and tokenizer
|
9 |
MODEL = None
|
10 |
-
|
11 |
-
STOI = None
|
12 |
-
ITOS = None
|
13 |
|
14 |
def initialize():
|
15 |
-
global MODEL,
|
16 |
|
17 |
if MODEL is None:
|
18 |
print("Loading model and tokenizer...")
|
19 |
-
|
20 |
-
config_path = hf_hub_download(repo_id="jatingocodeo/shakespeare-decoder", filename="config.json")
|
21 |
-
model_path = hf_hub_download(repo_id="jatingocodeo/shakespeare-decoder", filename="pytorch_model.bin")
|
22 |
|
23 |
-
# Load config
|
24 |
-
with open(config_path, 'r') as f:
|
25 |
-
config_dict = json.load(f)
|
26 |
-
|
27 |
-
# Initialize model with config
|
28 |
-
config = GPTConfig(
|
29 |
-
vocab_size=config_dict['vocab_size'],
|
30 |
-
n_layer=config_dict['n_layer'],
|
31 |
-
n_head=config_dict['n_head'],
|
32 |
-
n_embd=config_dict['n_embd'],
|
33 |
-
block_size=config_dict['block_size'],
|
34 |
-
dropout=config_dict['dropout'],
|
35 |
-
bias=config_dict['bias']
|
36 |
-
)
|
37 |
-
model = GPT(config)
|
38 |
-
|
39 |
-
# Load model weights
|
40 |
-
state_dict = torch.load(model_path, map_location='cpu')
|
41 |
-
model.load_state_dict(state_dict)
|
42 |
-
model.eval()
|
43 |
-
MODEL = model
|
44 |
-
|
45 |
-
# Initialize tokenizer
|
46 |
try:
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
def generate_text(
|
66 |
-
prompt,
|
67 |
-
max_new_tokens=100,
|
68 |
-
temperature=0.8,
|
69 |
-
top_k=50
|
70 |
-
):
|
71 |
# Initialize if not already done
|
72 |
if MODEL is None:
|
73 |
initialize()
|
74 |
|
75 |
-
# Encode the prompt
|
76 |
-
encode = lambda s: [STOI[c] for c in s]
|
77 |
-
decode = lambda l: ''.join([ITOS[i] for i in l])
|
78 |
-
|
79 |
try:
|
80 |
-
#
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# Generate
|
84 |
with torch.no_grad():
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Decode and return
|
88 |
-
generated_text = decode(
|
89 |
-
return generated_text
|
90 |
-
|
91 |
-
return "Error: The prompt contains characters that are not in the training data. Please use only standard English characters."
|
92 |
except Exception as e:
|
93 |
return f"Error generating text: {str(e)}"
|
94 |
|
@@ -96,52 +87,27 @@ def generate_text(
|
|
96 |
initialize()
|
97 |
|
98 |
# Create Gradio interface
|
99 |
-
|
100 |
fn=generate_text,
|
101 |
inputs=[
|
102 |
-
gr.Textbox(
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
),
|
107 |
-
gr.Slider(
|
108 |
-
label="Max New Tokens",
|
109 |
-
minimum=10,
|
110 |
-
maximum=500,
|
111 |
-
value=100,
|
112 |
-
step=10
|
113 |
-
),
|
114 |
-
gr.Slider(
|
115 |
-
label="Temperature",
|
116 |
-
minimum=0.1,
|
117 |
-
maximum=2.0,
|
118 |
-
value=0.8,
|
119 |
-
step=0.1
|
120 |
-
),
|
121 |
-
gr.Slider(
|
122 |
-
label="Top-k",
|
123 |
-
minimum=1,
|
124 |
-
maximum=100,
|
125 |
-
value=50,
|
126 |
-
step=1
|
127 |
-
),
|
128 |
],
|
129 |
-
outputs=gr.Textbox(label="Generated Text", lines=
|
130 |
-
title="
|
131 |
-
description="""
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
- Temperature: Higher values make the output more random, lower values make it more deterministic
|
136 |
-
- Top-k: Number of highest probability tokens to consider at each step
|
137 |
-
- Max New Tokens: Maximum number of tokens to generate
|
138 |
-
""",
|
139 |
examples=[
|
140 |
-
["
|
141 |
-
["
|
142 |
-
["
|
143 |
-
]
|
|
|
144 |
)
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
-
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
4 |
|
5 |
# Cache for model and tokenizer
|
6 |
MODEL = None
|
7 |
+
TOKENIZER = None
|
|
|
|
|
8 |
|
9 |
def initialize():
|
10 |
+
global MODEL, TOKENIZER
|
11 |
|
12 |
if MODEL is None:
|
13 |
print("Loading model and tokenizer...")
|
14 |
+
model_id = "jatingocodeo/SmolLM2"
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
try:
|
17 |
+
# Load tokenizer
|
18 |
+
print("\n1. Loading tokenizer...")
|
19 |
+
TOKENIZER = AutoTokenizer.from_pretrained(model_id)
|
20 |
+
print("✓ Tokenizer loaded successfully")
|
21 |
+
|
22 |
+
# Add special tokens if needed
|
23 |
+
special_tokens = {
|
24 |
+
'pad_token': '[PAD]',
|
25 |
+
'eos_token': '</s>',
|
26 |
+
'bos_token': '<s>'
|
27 |
+
}
|
28 |
+
num_added = TOKENIZER.add_special_tokens(special_tokens)
|
29 |
+
print(f"✓ Added {num_added} special tokens")
|
30 |
+
|
31 |
+
# Load model
|
32 |
+
print("\n2. Loading model...")
|
33 |
+
MODEL = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_id,
|
35 |
+
trust_remote_code=True,
|
36 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
37 |
+
low_cpu_mem_usage=True
|
38 |
+
)
|
39 |
+
|
40 |
+
# Move model to appropriate device
|
41 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
+
MODEL = MODEL.to(device)
|
43 |
+
print(f"✓ Model loaded successfully and moved to {device}")
|
44 |
+
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error initializing model: {str(e)}")
|
47 |
+
raise
|
48 |
|
49 |
+
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
|
|
|
|
|
|
|
|
|
|
50 |
# Initialize if not already done
|
51 |
if MODEL is None:
|
52 |
initialize()
|
53 |
|
|
|
|
|
|
|
|
|
54 |
try:
|
55 |
+
# Process prompt
|
56 |
+
if not prompt.strip():
|
57 |
+
return "Please enter a prompt."
|
58 |
+
|
59 |
+
if not prompt.startswith(TOKENIZER.bos_token):
|
60 |
+
prompt = TOKENIZER.bos_token + prompt
|
61 |
+
|
62 |
+
# Encode prompt
|
63 |
+
input_ids = TOKENIZER.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
64 |
+
input_ids = input_ids.to(MODEL.device)
|
65 |
|
66 |
# Generate
|
67 |
with torch.no_grad():
|
68 |
+
output_ids = MODEL.generate(
|
69 |
+
input_ids,
|
70 |
+
max_length=min(max_length + len(input_ids[0]), 2048),
|
71 |
+
temperature=temperature,
|
72 |
+
top_k=top_k,
|
73 |
+
do_sample=True,
|
74 |
+
pad_token_id=TOKENIZER.pad_token_id,
|
75 |
+
eos_token_id=TOKENIZER.eos_token_id,
|
76 |
+
num_return_sequences=1
|
77 |
+
)
|
78 |
|
79 |
# Decode and return
|
80 |
+
generated_text = TOKENIZER.decode(output_ids[0], skip_special_tokens=True)
|
81 |
+
return generated_text.strip()
|
82 |
+
|
|
|
83 |
except Exception as e:
|
84 |
return f"Error generating text: {str(e)}"
|
85 |
|
|
|
87 |
initialize()
|
88 |
|
89 |
# Create Gradio interface
|
90 |
+
iface = gr.Interface(
|
91 |
fn=generate_text,
|
92 |
inputs=[
|
93 |
+
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
|
94 |
+
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
|
95 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
96 |
+
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
],
|
98 |
+
outputs=gr.Textbox(label="Generated Text", lines=5),
|
99 |
+
title="SmolLM2 Text Generator",
|
100 |
+
description="""Generate text using the fine-tuned SmolLM2 model.
|
101 |
+
- Max Length: Controls the length of generated text
|
102 |
+
- Temperature: Controls randomness (higher = more creative)
|
103 |
+
- Top K: Controls diversity of word choices""",
|
|
|
|
|
|
|
|
|
104 |
examples=[
|
105 |
+
["Once upon a time", 100, 0.7, 50],
|
106 |
+
["The quick brown fox", 150, 0.8, 40],
|
107 |
+
["In a galaxy far far away", 200, 0.9, 30],
|
108 |
+
],
|
109 |
+
allow_flagging="never"
|
110 |
)
|
111 |
|
112 |
if __name__ == "__main__":
|
113 |
+
iface.launch()
|