Spaces:
Runtime error
Runtime error
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import models | |
from models.base import BaseModel | |
from models.utils import chunk_batch | |
from systems.utils import update_module_step | |
from nerfacc import ContractionType, OccupancyGrid, ray_marching, render_weight_from_density, render_weight_from_alpha, accumulate_along_rays | |
from nerfacc.intersection import ray_aabb_intersect | |
import pdb | |
class VarianceNetwork(nn.Module): | |
def __init__(self, config): | |
super(VarianceNetwork, self).__init__() | |
self.config = config | |
self.init_val = self.config.init_val | |
self.register_parameter('variance', nn.Parameter(torch.tensor(self.config.init_val))) | |
self.modulate = self.config.get('modulate', False) | |
if self.modulate: | |
self.mod_start_steps = self.config.mod_start_steps | |
self.reach_max_steps = self.config.reach_max_steps | |
self.max_inv_s = self.config.max_inv_s | |
def inv_s(self): | |
val = torch.exp(self.variance * 10.0) | |
if self.modulate and self.do_mod: | |
val = val.clamp_max(self.mod_val) | |
return val | |
def forward(self, x): | |
return torch.ones([len(x), 1], device=self.variance.device) * self.inv_s | |
def update_step(self, epoch, global_step): | |
if self.modulate: | |
self.do_mod = global_step > self.mod_start_steps | |
if not self.do_mod: | |
self.prev_inv_s = self.inv_s.item() | |
else: | |
self.mod_val = min((global_step / self.reach_max_steps) * (self.max_inv_s - self.prev_inv_s) + self.prev_inv_s, self.max_inv_s) | |
class NeuSModel(BaseModel): | |
def setup(self): | |
self.geometry = models.make(self.config.geometry.name, self.config.geometry) | |
self.texture = models.make(self.config.texture.name, self.config.texture) | |
self.geometry.contraction_type = ContractionType.AABB | |
if self.config.learned_background: | |
self.geometry_bg = models.make(self.config.geometry_bg.name, self.config.geometry_bg) | |
self.texture_bg = models.make(self.config.texture_bg.name, self.config.texture_bg) | |
self.geometry_bg.contraction_type = ContractionType.UN_BOUNDED_SPHERE | |
self.near_plane_bg, self.far_plane_bg = 0.1, 1e3 | |
self.cone_angle_bg = 10**(math.log10(self.far_plane_bg) / self.config.num_samples_per_ray_bg) - 1. | |
self.render_step_size_bg = 0.01 | |
self.variance = VarianceNetwork(self.config.variance) | |
self.register_buffer('scene_aabb', torch.as_tensor([-self.config.radius, -self.config.radius, -self.config.radius, self.config.radius, self.config.radius, self.config.radius], dtype=torch.float32)) | |
if self.config.grid_prune: | |
self.occupancy_grid = OccupancyGrid( | |
roi_aabb=self.scene_aabb, | |
resolution=128, | |
contraction_type=ContractionType.AABB | |
) | |
if self.config.learned_background: | |
self.occupancy_grid_bg = OccupancyGrid( | |
roi_aabb=self.scene_aabb, | |
resolution=256, | |
contraction_type=ContractionType.UN_BOUNDED_SPHERE | |
) | |
self.randomized = self.config.randomized | |
self.background_color = None | |
self.render_step_size = 1.732 * 2 * self.config.radius / self.config.num_samples_per_ray | |
def update_step(self, epoch, global_step): | |
update_module_step(self.geometry, epoch, global_step) | |
update_module_step(self.texture, epoch, global_step) | |
if self.config.learned_background: | |
update_module_step(self.geometry_bg, epoch, global_step) | |
update_module_step(self.texture_bg, epoch, global_step) | |
update_module_step(self.variance, epoch, global_step) | |
cos_anneal_end = self.config.get('cos_anneal_end', 0) | |
self.cos_anneal_ratio = 1.0 if cos_anneal_end == 0 else min(1.0, global_step / cos_anneal_end) | |
def occ_eval_fn(x): | |
sdf = self.geometry(x, with_grad=False, with_feature=False) | |
inv_s = self.variance(torch.zeros([1, 3]))[:, :1].clip(1e-6, 1e6) | |
inv_s = inv_s.expand(sdf.shape[0], 1) | |
estimated_next_sdf = sdf[...,None] - self.render_step_size * 0.5 | |
estimated_prev_sdf = sdf[...,None] + self.render_step_size * 0.5 | |
prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_s) | |
next_cdf = torch.sigmoid(estimated_next_sdf * inv_s) | |
p = prev_cdf - next_cdf | |
c = prev_cdf | |
alpha = ((p + 1e-5) / (c + 1e-5)).view(-1, 1).clip(0.0, 1.0) | |
return alpha | |
def occ_eval_fn_bg(x): | |
density, _ = self.geometry_bg(x) | |
# approximate for 1 - torch.exp(-density[...,None] * self.render_step_size_bg) based on taylor series | |
return density[...,None] * self.render_step_size_bg | |
if self.training and self.config.grid_prune: | |
self.occupancy_grid.every_n_step(step=global_step, occ_eval_fn=occ_eval_fn, occ_thre=self.config.get('grid_prune_occ_thre', 0.01)) | |
if self.config.learned_background: | |
self.occupancy_grid_bg.every_n_step(step=global_step, occ_eval_fn=occ_eval_fn_bg, occ_thre=self.config.get('grid_prune_occ_thre_bg', 0.01)) | |
def isosurface(self): | |
mesh = self.geometry.isosurface() | |
return mesh | |
def get_alpha(self, sdf, normal, dirs, dists): | |
inv_s = self.variance(torch.zeros([1, 3]))[:, :1].clip(1e-6, 1e6) # Single parameter | |
inv_s = inv_s.expand(sdf.shape[0], 1) | |
true_cos = (dirs * normal).sum(-1, keepdim=True) | |
# "cos_anneal_ratio" grows from 0 to 1 in the beginning training iterations. The anneal strategy below makes | |
# the cos value "not dead" at the beginning training iterations, for better convergence. | |
iter_cos = -(F.relu(-true_cos * 0.5 + 0.5) * (1.0 - self.cos_anneal_ratio) + | |
F.relu(-true_cos) * self.cos_anneal_ratio) # always non-positive | |
# Estimate signed distances at section points | |
estimated_next_sdf = sdf[...,None] + iter_cos * dists.reshape(-1, 1) * 0.5 | |
estimated_prev_sdf = sdf[...,None] - iter_cos * dists.reshape(-1, 1) * 0.5 | |
prev_cdf = torch.sigmoid(estimated_prev_sdf * inv_s) | |
next_cdf = torch.sigmoid(estimated_next_sdf * inv_s) | |
p = prev_cdf - next_cdf | |
c = prev_cdf | |
alpha = ((p + 1e-5) / (c + 1e-5)).view(-1).clip(0.0, 1.0) | |
return alpha | |
def forward_bg_(self, rays): | |
n_rays = rays.shape[0] | |
rays_o, rays_d = rays[:, 0:3], rays[:, 3:6] # both (N_rays, 3) | |
def sigma_fn(t_starts, t_ends, ray_indices): | |
ray_indices = ray_indices.long() | |
t_origins = rays_o[ray_indices] | |
t_dirs = rays_d[ray_indices] | |
positions = t_origins + t_dirs * (t_starts + t_ends) / 2. | |
density, _ = self.geometry_bg(positions) | |
return density[...,None] | |
_, t_max = ray_aabb_intersect(rays_o, rays_d, self.scene_aabb) | |
# if the ray intersects with the bounding box, start from the farther intersection point | |
# otherwise start from self.far_plane_bg | |
# note that in nerfacc t_max is set to 1e10 if there is no intersection | |
near_plane = torch.where(t_max > 1e9, self.near_plane_bg, t_max) | |
with torch.no_grad(): | |
ray_indices, t_starts, t_ends = ray_marching( | |
rays_o, rays_d, | |
scene_aabb=None, | |
grid=self.occupancy_grid_bg if self.config.grid_prune else None, | |
sigma_fn=sigma_fn, | |
near_plane=near_plane, far_plane=self.far_plane_bg, | |
render_step_size=self.render_step_size_bg, | |
stratified=self.randomized, | |
cone_angle=self.cone_angle_bg, | |
alpha_thre=0.0 | |
) | |
ray_indices = ray_indices.long() | |
t_origins = rays_o[ray_indices] | |
t_dirs = rays_d[ray_indices] | |
midpoints = (t_starts + t_ends) / 2. | |
positions = t_origins + t_dirs * midpoints | |
intervals = t_ends - t_starts | |
density, feature = self.geometry_bg(positions) | |
rgb = self.texture_bg(feature, t_dirs) | |
weights = render_weight_from_density(t_starts, t_ends, density[...,None], ray_indices=ray_indices, n_rays=n_rays) | |
opacity = accumulate_along_rays(weights, ray_indices, values=None, n_rays=n_rays) | |
depth = accumulate_along_rays(weights, ray_indices, values=midpoints, n_rays=n_rays) | |
comp_rgb = accumulate_along_rays(weights, ray_indices, values=rgb, n_rays=n_rays) | |
comp_rgb = comp_rgb + self.background_color * (1.0 - opacity) | |
out = { | |
'comp_rgb': comp_rgb, | |
'opacity': opacity, | |
'depth': depth, | |
'rays_valid': opacity > 0, | |
'num_samples': torch.as_tensor([len(t_starts)], dtype=torch.int32, device=rays.device) | |
} | |
if self.training: | |
out.update({ | |
'weights': weights.view(-1), | |
'points': midpoints.view(-1), | |
'intervals': intervals.view(-1), | |
'ray_indices': ray_indices.view(-1) | |
}) | |
return out | |
def forward_(self, rays): | |
n_rays = rays.shape[0] | |
rays_o, rays_d = rays[:, 0:3], rays[:, 3:6] # both (N_rays, 3) | |
with torch.no_grad(): | |
ray_indices, t_starts, t_ends = ray_marching( | |
rays_o, rays_d, | |
scene_aabb=self.scene_aabb, | |
grid=self.occupancy_grid if self.config.grid_prune else None, | |
alpha_fn=None, | |
near_plane=None, far_plane=None, | |
render_step_size=self.render_step_size, | |
stratified=self.randomized, | |
cone_angle=0.0, | |
alpha_thre=0.0 | |
) | |
ray_indices = ray_indices.long() | |
t_origins = rays_o[ray_indices] | |
t_dirs = rays_d[ray_indices] | |
midpoints = (t_starts + t_ends) / 2. | |
positions = t_origins + t_dirs * midpoints | |
dists = t_ends - t_starts | |
if self.config.geometry.grad_type == 'finite_difference': | |
sdf, sdf_grad, feature, sdf_laplace = self.geometry(positions, with_grad=True, with_feature=True, with_laplace=True) | |
else: | |
sdf, sdf_grad, feature = self.geometry(positions, with_grad=True, with_feature=True) | |
normal = F.normalize(sdf_grad, p=2, dim=-1) | |
alpha = self.get_alpha(sdf, normal, t_dirs, dists)[...,None] | |
rgb = self.texture(feature, t_dirs, normal) | |
weights = render_weight_from_alpha(alpha, ray_indices=ray_indices, n_rays=n_rays) | |
opacity = accumulate_along_rays(weights, ray_indices, values=None, n_rays=n_rays) | |
depth = accumulate_along_rays(weights, ray_indices, values=midpoints, n_rays=n_rays) | |
comp_rgb = accumulate_along_rays(weights, ray_indices, values=rgb, n_rays=n_rays) | |
comp_normal = accumulate_along_rays(weights, ray_indices, values=normal, n_rays=n_rays) | |
comp_normal = F.normalize(comp_normal, p=2, dim=-1) | |
pts_random = torch.rand([1024*2, 3]).to(sdf.dtype).to(sdf.device) * 2 - 1 # normalized to (-1, 1) | |
if self.config.geometry.grad_type == 'finite_difference': | |
random_sdf, random_sdf_grad, _ = self.geometry(pts_random, with_grad=True, with_feature=False, with_laplace=True) | |
_, normal_perturb, _ = self.geometry( | |
pts_random + torch.randn_like(pts_random) * 1e-2, | |
with_grad=True, with_feature=False, with_laplace=True | |
) | |
else: | |
random_sdf, random_sdf_grad = self.geometry(pts_random, with_grad=True, with_feature=False) | |
_, normal_perturb = self.geometry(positions + torch.randn_like(positions) * 1e-2, | |
with_grad=True, with_feature=False,) | |
# pdb.set_trace() | |
out = { | |
'comp_rgb': comp_rgb, | |
'comp_normal': comp_normal, | |
'opacity': opacity, | |
'depth': depth, | |
'rays_valid': opacity > 0, | |
'num_samples': torch.as_tensor([len(t_starts)], dtype=torch.int32, device=rays.device) | |
} | |
if self.training: | |
out.update({ | |
'sdf_samples': sdf, | |
'sdf_grad_samples': sdf_grad, | |
'random_sdf': random_sdf, | |
'random_sdf_grad': random_sdf_grad, | |
'normal_perturb' : normal_perturb, | |
'weights': weights.view(-1), | |
'points': midpoints.view(-1), | |
'intervals': dists.view(-1), | |
'ray_indices': ray_indices.view(-1) | |
}) | |
if self.config.geometry.grad_type == 'finite_difference': | |
out.update({ | |
'sdf_laplace_samples': sdf_laplace | |
}) | |
if self.config.learned_background: | |
out_bg = self.forward_bg_(rays) | |
else: | |
out_bg = { | |
'comp_rgb': self.background_color[None,:].expand(*comp_rgb.shape), | |
'num_samples': torch.zeros_like(out['num_samples']), | |
'rays_valid': torch.zeros_like(out['rays_valid']) | |
} | |
out_full = { | |
'comp_rgb': out['comp_rgb'] + out_bg['comp_rgb'] * (1.0 - out['opacity']), | |
'num_samples': out['num_samples'] + out_bg['num_samples'], | |
'rays_valid': out['rays_valid'] | out_bg['rays_valid'] | |
} | |
return { | |
**out, | |
**{k + '_bg': v for k, v in out_bg.items()}, | |
**{k + '_full': v for k, v in out_full.items()} | |
} | |
def forward(self, rays): | |
if self.training: | |
out = self.forward_(rays) | |
else: | |
out = chunk_batch(self.forward_, self.config.ray_chunk, True, rays) | |
return { | |
**out, | |
'inv_s': self.variance.inv_s | |
} | |
def train(self, mode=True): | |
self.randomized = mode and self.config.randomized | |
return super().train(mode=mode) | |
def eval(self): | |
self.randomized = False | |
return super().eval() | |
def regularizations(self, out): | |
losses = {} | |
losses.update(self.geometry.regularizations(out)) | |
losses.update(self.texture.regularizations(out)) | |
return losses | |
def export(self, export_config): | |
mesh = self.isosurface() | |
if export_config.export_vertex_color: | |
_, sdf_grad, feature = chunk_batch(self.geometry, export_config.chunk_size, False, mesh['v_pos'].to(self.rank), with_grad=True, with_feature=True) | |
normal = F.normalize(sdf_grad, p=2, dim=-1) | |
rgb = self.texture(feature, -normal, normal) # set the viewing directions to the normal to get "albedo" | |
mesh['v_rgb'] = rgb.cpu() | |
return mesh | |