Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,11 +14,13 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
#Use own TTS Model
|
17 |
-
processor = SpeechT5Processor.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
|
|
|
18 |
|
19 |
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
20 |
#Use own TTS Model
|
21 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
|
|
|
22 |
|
23 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
24 |
|
@@ -35,7 +37,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
35 |
# At Inference. it should use translate(sample["audio"].copy())
|
36 |
|
37 |
def translate(audio):
|
38 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "
|
39 |
return outputs["text"]
|
40 |
|
41 |
|
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
#Use own TTS Model
|
17 |
+
#processor = SpeechT5Processor.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
|
18 |
+
processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
19 |
|
20 |
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
21 |
#Use own TTS Model
|
22 |
+
'model = SpeechT5ForTextToSpeech.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
|
23 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
24 |
|
25 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
26 |
|
|
|
37 |
# At Inference. it should use translate(sample["audio"].copy())
|
38 |
|
39 |
def translate(audio):
|
40 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
41 |
return outputs["text"]
|
42 |
|
43 |
|