jason1i commited on
Commit
f9cf525
·
1 Parent(s): 579a1bf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -14,11 +14,13 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
14
  # load text-to-speech checkpoint and speaker embeddings
15
  #processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
  #Use own TTS Model
17
- processor = SpeechT5Processor.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
 
18
 
19
  #model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
20
  #Use own TTS Model
21
- model = SpeechT5ForTextToSpeech.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
 
22
 
23
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
24
 
@@ -35,7 +37,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
35
  # At Inference. it should use translate(sample["audio"].copy())
36
 
37
  def translate(audio):
38
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fi"})
39
  return outputs["text"]
40
 
41
 
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
  #processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
  #Use own TTS Model
17
+ #processor = SpeechT5Processor.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
18
+ processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
19
 
20
  #model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
21
  #Use own TTS Model
22
+ 'model = SpeechT5ForTextToSpeech.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
23
+ model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
24
 
25
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
26
 
 
37
  # At Inference. it should use translate(sample["audio"].copy())
38
 
39
  def translate(audio):
40
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
41
  return outputs["text"]
42
 
43