Upload folder using huggingface_hub
Browse files- app.py +33 -64
- requirements.txt +0 -1
app.py
CHANGED
@@ -9,7 +9,6 @@ import torch.optim as optim
|
|
9 |
import torchvision.models as models
|
10 |
import numpy as np
|
11 |
import gradio as gr
|
12 |
-
from gradio_imageslider import ImageSlider
|
13 |
from safetensors.torch import load_file
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
|
@@ -54,66 +53,38 @@ for style_name, style_img_path in style_options.items():
|
|
54 |
cached_style_features[style_name] = style_features
|
55 |
|
56 |
@spaces.GPU(duration=30)
|
57 |
-
def run(content_image, style_name, style_strength=10, optim_name='AdamW'):
|
58 |
-
yield
|
59 |
content_img, original_size = preprocess_img(content_image, img_size)
|
60 |
content_img_normalized, _ = preprocess_img(content_image, img_size, normalize=True)
|
61 |
content_img, content_img_normalized = content_img.to(device), content_img_normalized.to(device)
|
|
|
62 |
|
63 |
-
if optim_name == 'Adam':
|
64 |
-
|
65 |
-
elif optim_name == '
|
66 |
-
optim_caller = torch.optim.AdamW
|
67 |
-
else:
|
68 |
-
optim_caller = torch.optim.LBFGS
|
69 |
|
70 |
print('-'*15)
|
71 |
print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est
|
72 |
print('STYLE:', style_name)
|
73 |
print('CONTENT IMG SIZE:', original_size)
|
74 |
print('STYLE STRENGTH:', style_strength, f'(lr={lrs[style_strength-1]:.3f})')
|
75 |
-
|
76 |
-
style_features = cached_style_features[style_name]
|
77 |
|
78 |
st = time.time()
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
return inference(
|
90 |
-
model=model,
|
91 |
-
sod_model=sod_model,
|
92 |
-
content_image=content_img,
|
93 |
-
content_image_norm=content_img_normalized,
|
94 |
-
style_features=style_features,
|
95 |
-
lr=lrs[style_strength-1],
|
96 |
-
apply_to_background=apply_to_background,
|
97 |
-
optim_caller=optim_caller
|
98 |
-
)
|
99 |
-
|
100 |
-
with ThreadPoolExecutor() as executor:
|
101 |
-
if device == 'cuda':
|
102 |
-
future_all = executor.submit(run_inference_cuda, False, stream_all)
|
103 |
-
future_bg = executor.submit(run_inference_cuda, True, stream_bg)
|
104 |
-
else:
|
105 |
-
future_all = executor.submit(run_inference, False)
|
106 |
-
future_bg = executor.submit(run_inference, True)
|
107 |
-
generated_img_all = future_all.result()
|
108 |
-
generated_img_bg = future_bg.result()
|
109 |
-
|
110 |
et = time.time()
|
111 |
print('TIME TAKEN:', et-st)
|
112 |
|
113 |
-
yield (
|
114 |
-
(content_image, postprocess_img(generated_img_all, original_size)),
|
115 |
-
(content_image, postprocess_img(generated_img_bg, original_size))
|
116 |
-
)
|
117 |
|
118 |
def set_slider(value):
|
119 |
return gr.update(value=value)
|
@@ -133,6 +104,8 @@ with gr.Blocks(css=css) as demo:
|
|
133 |
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
|
134 |
with gr.Group():
|
135 |
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=10, step=1, value=10, info='Higher values add artistic flair, lower values add a realistic feel.')
|
|
|
|
|
136 |
with gr.Accordion(label='Advanced Options', open=False):
|
137 |
optim_dropdown = gr.Radio(choices=['Adam', 'AdamW', 'L-BFGS'], label='Optimizer', value='AdamW', type='value')
|
138 |
submit_button = gr.Button('Submit', variant='primary')
|
@@ -147,34 +120,30 @@ with gr.Blocks(css=css) as demo:
|
|
147 |
)
|
148 |
|
149 |
with gr.Column():
|
150 |
-
|
151 |
-
|
152 |
-
with gr.Group():
|
153 |
-
output_image_background = ImageSlider(position=0.15, label='Styled Background', type='pil', interactive=False, show_download_button=False)
|
154 |
-
download_button_2 = gr.DownloadButton(label='Download Styled Background', visible=False)
|
155 |
|
156 |
-
def save_image(
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
return filename1, filename2
|
161 |
|
162 |
submit_button.click(
|
163 |
-
fn=lambda:
|
164 |
-
outputs=
|
165 |
)
|
166 |
|
167 |
submit_button.click(
|
168 |
fn=run,
|
169 |
-
inputs=[content_image, style_dropdown, style_strength_slider, optim_dropdown],
|
170 |
-
outputs=
|
171 |
).then(
|
172 |
fn=save_image,
|
173 |
-
inputs=
|
174 |
-
outputs=
|
175 |
).then(
|
176 |
-
fn=lambda:
|
177 |
-
outputs=
|
178 |
)
|
179 |
|
180 |
demo.queue = False
|
|
|
9 |
import torchvision.models as models
|
10 |
import numpy as np
|
11 |
import gradio as gr
|
|
|
12 |
from safetensors.torch import load_file
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
|
|
|
53 |
cached_style_features[style_name] = style_features
|
54 |
|
55 |
@spaces.GPU(duration=30)
|
56 |
+
def run(content_image, style_name, style_strength=10, optim_name='AdamW', apply_to_background=False):
|
57 |
+
yield None
|
58 |
content_img, original_size = preprocess_img(content_image, img_size)
|
59 |
content_img_normalized, _ = preprocess_img(content_image, img_size, normalize=True)
|
60 |
content_img, content_img_normalized = content_img.to(device), content_img_normalized.to(device)
|
61 |
+
style_features = cached_style_features[style_name]
|
62 |
|
63 |
+
if optim_name == 'Adam': optim_caller = torch.optim.Adam
|
64 |
+
elif optim_name == 'AdamW': optim_caller = torch.optim.AdamW
|
65 |
+
elif optim_name == 'L-BFGS': optim_caller = torch.optim.LBFGS
|
|
|
|
|
|
|
66 |
|
67 |
print('-'*15)
|
68 |
print('DATETIME:', datetime.now(timezone.utc) - timedelta(hours=4)) # est
|
69 |
print('STYLE:', style_name)
|
70 |
print('CONTENT IMG SIZE:', original_size)
|
71 |
print('STYLE STRENGTH:', style_strength, f'(lr={lrs[style_strength-1]:.3f})')
|
|
|
|
|
72 |
|
73 |
st = time.time()
|
74 |
+
generated_img = inference(
|
75 |
+
model=model,
|
76 |
+
sod_model=sod_model,
|
77 |
+
content_image=content_img,
|
78 |
+
content_image_norm=content_img_normalized,
|
79 |
+
style_features=style_features,
|
80 |
+
lr=lrs[style_strength-1],
|
81 |
+
apply_to_background=apply_to_background,
|
82 |
+
optim_caller=optim_caller
|
83 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
et = time.time()
|
85 |
print('TIME TAKEN:', et-st)
|
86 |
|
87 |
+
yield postprocess_img(generated_img, original_size)
|
|
|
|
|
|
|
88 |
|
89 |
def set_slider(value):
|
90 |
return gr.update(value=value)
|
|
|
104 |
style_dropdown = gr.Radio(choices=list(style_options.keys()), label='Style', value='Starry Night', type='value')
|
105 |
with gr.Group():
|
106 |
style_strength_slider = gr.Slider(label='Style Strength', minimum=1, maximum=10, step=1, value=10, info='Higher values add artistic flair, lower values add a realistic feel.')
|
107 |
+
with gr.Group():
|
108 |
+
apply_to_background_checkbox = gr.Checkbox(label='Apply styling to background only', value=False)
|
109 |
with gr.Accordion(label='Advanced Options', open=False):
|
110 |
optim_dropdown = gr.Radio(choices=['Adam', 'AdamW', 'L-BFGS'], label='Optimizer', value='AdamW', type='value')
|
111 |
submit_button = gr.Button('Submit', variant='primary')
|
|
|
120 |
)
|
121 |
|
122 |
with gr.Column():
|
123 |
+
output_image = gr.Image(label='Output', type='pil', interactive=False, show_download_button=False)
|
124 |
+
download_button = gr.DownloadButton(label='Download Image', visible=False)
|
|
|
|
|
|
|
125 |
|
126 |
+
def save_image(img):
|
127 |
+
filename = 'generated.jpg'
|
128 |
+
img.save(filename)
|
129 |
+
return filename
|
|
|
130 |
|
131 |
submit_button.click(
|
132 |
+
fn=lambda: gr.update(visible=False),
|
133 |
+
outputs=download_button
|
134 |
)
|
135 |
|
136 |
submit_button.click(
|
137 |
fn=run,
|
138 |
+
inputs=[content_image, style_dropdown, style_strength_slider, optim_dropdown, apply_to_background_checkbox],
|
139 |
+
outputs=output_image
|
140 |
).then(
|
141 |
fn=save_image,
|
142 |
+
inputs=output_image,
|
143 |
+
outputs=download_button
|
144 |
).then(
|
145 |
+
fn=lambda: gr.update(visible=True),
|
146 |
+
outputs=download_button
|
147 |
)
|
148 |
|
149 |
demo.queue = False
|
requirements.txt
CHANGED
@@ -5,7 +5,6 @@ safetensors
|
|
5 |
huggingface_hub
|
6 |
pillow
|
7 |
gradio
|
8 |
-
gradio_imageslider
|
9 |
spaces
|
10 |
tqdm
|
11 |
tensorboard
|
|
|
5 |
huggingface_hub
|
6 |
pillow
|
7 |
gradio
|
|
|
8 |
spaces
|
9 |
tqdm
|
10 |
tensorboard
|