import datetime import os from dotenv import load_dotenv import asyncio from fastapi import FastAPI, Body, File, UploadFile, HTTPException from fastapi.responses import StreamingResponse from typing import List, AsyncIterable, Annotated, Optional from enum import Enum from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from langchain_openai import ChatOpenAI from langchain import hub from langchain_chroma import Chroma from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_nomic.embeddings import NomicEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.callbacks import AsyncIteratorCallbackHandler from langchain_core.documents import Document from in_memory import load_all_documents from langchain_nomic.embeddings import Embeddings, NomicEmbeddings from loader import load_web_content, load_youtube_content from get_pattern import generate_pattern from get_agents import process_agents # ################################### FastAPI setup ############################################ app = FastAPI() origins = ["*"] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # ################################### Helper functions ############################################ # async def load_all_documents(files: List[UploadFile]) -> List[Document]: # documents = [] # for file in files: # docs = await load_document(file) # documents.extend(docs) # return documents # ################################### LLM, RAG and Streaming ############################################ load_dotenv() GROQ_API_KEY = os.environ.get("GROQ_API_KEY") GROQ_API_BASE = os.environ.get("GROQ_API_BASE") OPENAI_MODEL_NAME = os.environ.get("OPENAI_MODEL_NAME") embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5") def split_documents(documents: List[Document], chunk_size=1000, chunk_overlap=200) -> List[Document]: text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) print("Splitting documents into chunks...") return text_splitter.split_documents(documents) def generate_embeddings(documents: List[Document]) -> NomicEmbeddings: embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5") embeddings = [embedding_model.embed( [document.page_content], task_type='search_document') for document in documents] return embedding_model def store_embeddings(documents: List[Document], embeddings: NomicEmbeddings): vectorstore = Chroma.from_documents( documents=documents, embedding=embeddings, persist_directory="./chroma_db") return vectorstore def load_embeddings(embeddings: NomicEmbeddings) -> Chroma: embeddings = Chroma(persist_directory="./chroma_db", embedding_function=embeddings) return embeddings # ################################### Updated generate_chunks Function ############################################ async def generate_chunks(query: str) -> AsyncIterable[str]: callback = AsyncIteratorCallbackHandler() llm = ChatOpenAI( openai_api_base=GROQ_API_BASE, api_key=GROQ_API_KEY, temperature=0.0, model_name=OPENAI_MODEL_NAME, # "mixtral-8x7b-32768", streaming=True, # ! important verbose=True, callbacks=[callback] ) # Load vector store (this should be pre-populated with documents and embeddings) # Ensure to modify this to load your actual vector store vectorstore = load_embeddings(embeddings=embedding_model) # Retrieve relevant documents for the query retriever = vectorstore.as_retriever() # relevant_docs = retriever(query) # Combine the retrieved documents into a single string def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) # Define the RAG chain prompt = hub.pull("rlm/rag-prompt") rag_chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) # Generate the response task = asyncio.create_task( rag_chain.ainvoke(query) ) index = 0 try: async for token in callback.aiter(): print(index, ": ", token, ": ", datetime.datetime.now().time()) index = index + 1 yield token except Exception as e: print(f"Caught exception: {e}") finally: callback.done.set() await task # ################################### Models ######################################## class QuestionType(str, Enum): PATTERN = "PATTERN" AGENTS = "AGENTS" RAG = "RAG" class Input(BaseModel): question: str type: QuestionType pattern: Optional[str] chat_history: List[str] class Metadata(BaseModel): conversation_id: str class Config(BaseModel): metadata: Metadata class RequestBody(BaseModel): input: Input config: Config # ################################### Routes ############################################ @app.get("/") def read_root(): return {"Hello": "World from Marigen"} @app.post("/chat", response_class=StreamingResponse) async def chat(query: RequestBody = Body(...)): print(query.input.question) print(query.input.type) if query.input.type == QuestionType.PATTERN: print(query.input.pattern) pattern = query.input.pattern gen = generate_pattern(pattern=pattern, query=query.input.question) return StreamingResponse(gen, media_type="text/event-stream") elif query.input.type == QuestionType.AGENTS: gen = process_agents(query.input.question) return StreamingResponse(gen, media_type="text/event-stream") elif query.input.type == QuestionType.RAG: gen = generate_chunks(query.input.question) return StreamingResponse(gen, media_type="text/event-stream") raise HTTPException(status_code=400, detail="No accurate response for your given query") @app.post("/uploadfiles") async def create_upload_files( files: Annotated[List[UploadFile], File(description="Multiple files as UploadFile")], ): try: # Load documents from files documents = await load_all_documents(files) print(f"Loaded {len(documents)} documents") print(f"----------> {documents} documents <-----------") chunks = [] # Split documents into chunks for docs in documents: print(docs) chunk = split_documents(docs[0]) chunks.extend(chunk) print(f"Split into {len(chunks)} chunks") # Generate embeddings for chunks # embeddings_model = generate_embeddings(chunks) # print(f"Generated {len(embeddings)} embeddings") # # Store embeddings in vector store vectorstore = store_embeddings(chunks, embedding_model) print("Embeddings stored in vector store") return {"filenames": [file.filename for file in files], 'chunks': chunks, "message": "Files processed and embeddings generated."} except Exception as e: print(f"Error loading documents: {e}") return {"message": f"Error loading documents: {e}"} # New routes for YouTube and website content loading @app.post("/load_youtube") async def load_youtube(youtube_url: str): try: documents = load_youtube_content(youtube_url) chunks = split_documents(documents) store_embeddings(chunks, embedding_model) return {"message": f"YouTube video loaded and processed successfully.", "documents": documents} except Exception as e: print(f"Error loading YouTube video: {e}") return {"message": f"Error loading YouTube video: {e}"} @app.post("/load_website") async def load_website(website_url: str): try: documents = load_web_content(website_url) chunks = split_documents(documents) store_embeddings(chunks, embedding_model) return {"message": f"Website loaded and processed successfully.", "documents": documents} except Exception as e: print(f"Error loading website: {e}") return {"message": f"Error loading website: {e}"} @app.post("/query") async def query_vector_store(query: str): # Load the vector store (ensure you maintain a reference to it, possibly store in memory or a persistent store) # Modify this with actual loading mechanism vectorstore = load_embeddings(embeddings=embedding_model) # Perform a query to retrieve relevant documents relevant_docs = vectorstore.query(query) return {"query": query, "results": [doc.page_content for doc in relevant_docs]}