File size: 8,841 Bytes
1897f56
 
 
 
 
84bd7df
1897f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84bd7df
 
 
1897f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84bd7df
1897f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84bd7df
1897f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84bd7df
 
 
 
 
1897f56
 
84bd7df
1897f56
84bd7df
1897f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84bd7df
1897f56
 
 
 
84bd7df
1897f56
84bd7df
 
 
1897f56
84bd7df
 
 
1897f56
84bd7df
1897f56
 
 
84bd7df
1897f56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import datetime
import os
from dotenv import load_dotenv

import asyncio
from fastapi import FastAPI, Body, File, UploadFile, HTTPException
from fastapi.responses import StreamingResponse
from typing import List, AsyncIterable, Annotated, Optional
from enum import Enum

from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from langchain_openai import ChatOpenAI
from langchain import hub
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_nomic.embeddings import NomicEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.callbacks import AsyncIteratorCallbackHandler
from langchain_core.documents import Document
from in_memory import load_all_documents
from langchain_nomic.embeddings import Embeddings, NomicEmbeddings
from loader import load_web_content, load_youtube_content
from get_pattern import generate_pattern
from get_agents import process_agents


# ################################### FastAPI setup ############################################
app = FastAPI()

origins = ["*"]

app.add_middleware(
    CORSMiddleware,
    allow_origins=origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# ################################### Helper functions ############################################
# async def load_all_documents(files: List[UploadFile]) -> List[Document]:
#     documents = []
#     for file in files:
#         docs = await load_document(file)
#         documents.extend(docs)
#     return documents


# ################################### LLM, RAG and Streaming ############################################
load_dotenv()
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
GROQ_API_BASE = os.environ.get("GROQ_API_BASE")
OPENAI_MODEL_NAME = os.environ.get("OPENAI_MODEL_NAME")
embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5")


def split_documents(documents: List[Document], chunk_size=1000, chunk_overlap=200) -> List[Document]:
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=chunk_size, chunk_overlap=chunk_overlap
    )
    print("Splitting documents into chunks...")

    return text_splitter.split_documents(documents)


def generate_embeddings(documents: List[Document]) -> NomicEmbeddings:
    embedding_model = NomicEmbeddings(model="nomic-embed-text-v1.5")
    embeddings = [embedding_model.embed(
        [document.page_content], task_type='search_document') for document in documents]
    return embedding_model


def store_embeddings(documents: List[Document], embeddings: NomicEmbeddings):
    vectorstore = Chroma.from_documents(
        documents=documents, embedding=embeddings, persist_directory="./chroma_db")
    return vectorstore


def load_embeddings(embeddings: NomicEmbeddings) -> Chroma:
    embeddings = Chroma(persist_directory="./chroma_db",
                        embedding_function=embeddings)
    return embeddings

# ################################### Updated generate_chunks Function ############################################


async def generate_chunks(query: str) -> AsyncIterable[str]:
    callback = AsyncIteratorCallbackHandler()

    llm = ChatOpenAI(
        openai_api_base=GROQ_API_BASE,
        api_key=GROQ_API_KEY,
        temperature=0.0,
        model_name=OPENAI_MODEL_NAME,  # "mixtral-8x7b-32768",
        streaming=True,  # ! important
        verbose=True,
        callbacks=[callback]
    )

    # Load vector store (this should be pre-populated with documents and embeddings)
    # Ensure to modify this to load your actual vector store
    vectorstore = load_embeddings(embeddings=embedding_model)

    # Retrieve relevant documents for the query
    retriever = vectorstore.as_retriever()
    # relevant_docs = retriever(query)

    # Combine the retrieved documents into a single string
    def format_docs(docs):
        return "\n\n".join(doc.page_content for doc in docs)

    # Define the RAG chain
    prompt = hub.pull("rlm/rag-prompt")
    rag_chain = (
        {"context": retriever | format_docs, "question": RunnablePassthrough()}
        | prompt
        | llm
        | StrOutputParser()
    )

    # Generate the response
    task = asyncio.create_task(
        rag_chain.ainvoke(query)
    )
    index = 0
    try:
        async for token in callback.aiter():
            print(index, ": ", token, ": ", datetime.datetime.now().time())
            index = index + 1
            yield token
    except Exception as e:
        print(f"Caught exception: {e}")
    finally:
        callback.done.set()

    await task


# ################################### Models ########################################
class QuestionType(str, Enum):
    PATTERN = "PATTERN"
    AGENTS = "AGENTS"
    RAG = "RAG"

class Input(BaseModel):
    question: str
    type: QuestionType
    pattern: Optional[str]
    chat_history: List[str]


class Metadata(BaseModel):
    conversation_id: str


class Config(BaseModel):
    metadata: Metadata


class RequestBody(BaseModel):
    input: Input
    config: Config


# ################################### Routes ############################################


@app.get("/")
def read_root():
    return {"Hello": "World from Marigen"}


@app.post("/chat", response_class=StreamingResponse)
async def chat(query: RequestBody = Body(...)):
    print(query.input.question)
    print(query.input.type)

    if query.input.type == QuestionType.PATTERN:
        print(query.input.pattern)
        pattern = query.input.pattern
        gen = generate_pattern(pattern=pattern, query=query.input.question)
        return StreamingResponse(gen, media_type="text/event-stream")

    elif query.input.type == QuestionType.AGENTS:
        gen = process_agents(query.input.question)
        return StreamingResponse(gen, media_type="text/event-stream")

    elif query.input.type == QuestionType.RAG:
        gen = generate_chunks(query.input.question)
        return StreamingResponse(gen, media_type="text/event-stream")

    raise HTTPException(status_code=400, detail="No accurate response for your given query")

@app.post("/uploadfiles")
async def create_upload_files(
    files: Annotated[List[UploadFile], File(description="Multiple files as UploadFile")],
):
    try:
        # Load documents from files
        documents = await load_all_documents(files)
        print(f"Loaded {len(documents)} documents")
        print(f"----------> {documents} documents <-----------")

        chunks = []
        # Split documents into chunks
        for docs in documents:
            print(docs)
            chunk = split_documents(docs[0])
            chunks.extend(chunk)
            print(f"Split into {len(chunks)} chunks")

        # Generate embeddings for chunks
        # embeddings_model = generate_embeddings(chunks)
        # print(f"Generated {len(embeddings)} embeddings")

        # # Store embeddings in vector store
        vectorstore = store_embeddings(chunks, embedding_model)
        print("Embeddings stored in vector store")

        return {"filenames": [file.filename for file in files], 'chunks': chunks, "message": "Files processed and embeddings generated."}

    except Exception as e:
        print(f"Error loading documents: {e}")

        return {"message": f"Error loading documents: {e}"}


# New routes for YouTube and website content loading
@app.post("/load_youtube")
async def load_youtube(youtube_url: str):
    try:
        documents = load_youtube_content(youtube_url)
        chunks = split_documents(documents)
        store_embeddings(chunks, embedding_model)
        return {"message": f"YouTube video loaded and processed successfully.", "documents": documents}

    except Exception as e:
        print(f"Error loading YouTube video: {e}")
        return {"message": f"Error loading YouTube video: {e}"}


@app.post("/load_website")
async def load_website(website_url: str):
    try:
        documents = load_web_content(website_url)
        chunks = split_documents(documents)
        store_embeddings(chunks, embedding_model)
        return {"message": f"Website loaded and processed successfully.", "documents": documents}

    except Exception as e:
        print(f"Error loading website: {e}")
        return {"message": f"Error loading website: {e}"}


@app.post("/query")
async def query_vector_store(query: str):
    # Load the vector store (ensure you maintain a reference to it, possibly store in memory or a persistent store)
    # Modify this with actual loading mechanism
    vectorstore = load_embeddings(embeddings=embedding_model)

    # Perform a query to retrieve relevant documents
    relevant_docs = vectorstore.query(query)

    return {"query": query, "results": [doc.page_content for doc in relevant_docs]}