Spaces:
Running
Running
File size: 29,564 Bytes
383520d be2a132 383520d c27f115 383520d 23beeea 383520d be2a132 383520d be2a132 383520d be2a132 383520d be2a132 383520d be2a132 383520d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
"""
Voice cloning module for CSM-1B TTS API.
This module provides functionality to clone voices from audio samples,
with advanced audio preprocessing and voice adaptation techniques.
"""
import os
import io
import time
import tempfile
import logging
import asyncio
import yt_dlp
# Replace standard whisper with WhisperX
# import whisper
import whisperx
from typing import Dict, List, Optional, Union, Tuple, BinaryIO
from pathlib import Path
import numpy as np
import torch
import torchaudio
from pydantic import BaseModel
from fastapi import UploadFile
from app.model import Segment
# Set up logging
logger = logging.getLogger(__name__)
# Directory for storing cloned voice data
CLONED_VOICES_DIR = "/app/cloned_voices"
os.makedirs(CLONED_VOICES_DIR, exist_ok=True)
# WhisperX model cache for performance
_whisperx_model = None
_whisperx_model_lock = asyncio.Lock()
class ClonedVoice(BaseModel):
"""Model representing a cloned voice."""
id: str
name: str
created_at: float
speaker_id: int
description: Optional[str] = None
audio_duration: float
sample_count: int
class VoiceCloner:
"""Voice cloning utility for CSM-1B model."""
def __init__(self, generator, device="cuda"):
"""Initialize the voice cloner with a generator instance."""
self.generator = generator
self.device = device
self.sample_rate = generator.sample_rate
self.cloned_voices = self._load_existing_voices()
logger.info(f"Voice cloner initialized with {len(self.cloned_voices)} existing voices")
def _load_existing_voices(self) -> Dict[str, ClonedVoice]:
"""Load existing cloned voices from disk."""
voices = {}
if not os.path.exists(CLONED_VOICES_DIR):
return voices
for voice_dir in os.listdir(CLONED_VOICES_DIR):
voice_path = os.path.join(CLONED_VOICES_DIR, voice_dir)
if not os.path.isdir(voice_path):
continue
info_path = os.path.join(voice_path, "info.json")
if os.path.exists(info_path):
try:
import json
with open(info_path, "r") as f:
voice_info = json.load(f)
voices[voice_dir] = ClonedVoice(**voice_info)
logger.info(f"Loaded cloned voice: {voice_dir}")
except Exception as e:
logger.error(f"Error loading voice {voice_dir}: {e}")
return voices
async def process_audio_file(
self,
file: Union[UploadFile, BinaryIO, str],
transcript: Optional[str] = None
) -> Tuple[torch.Tensor, Optional[str], float]:
"""
Process an audio file for voice cloning.
Args:
file: The audio file (UploadFile, file-like object, or path)
transcript: Optional transcript of the audio
Returns:
Tuple of (processed_audio, transcript, duration_seconds)
"""
temp_path = None
try:
# Handle different input types
if isinstance(file, str):
# It's a file path
audio_path = file
logger.info(f"Processing audio from file path: {audio_path}")
else:
# Create a temporary file
temp_fd, temp_path = tempfile.mkstemp(suffix=".wav")
os.close(temp_fd) # Close the file descriptor
if isinstance(file, UploadFile):
# It's a FastAPI UploadFile
logger.info("Processing audio from UploadFile")
contents = await file.read()
with open(temp_path, "wb") as f:
f.write(contents)
elif hasattr(file, 'read'):
# It's a file-like object - check if it's async
logger.info("Processing audio from file-like object")
if asyncio.iscoroutinefunction(file.read):
# It's an async read method
contents = await file.read()
else:
# It's a sync read method
contents = file.read()
with open(temp_path, "wb") as f:
f.write(contents)
else:
raise ValueError(f"Unsupported file type: {type(file)}")
audio_path = temp_path
logger.info(f"Saved uploaded audio to temporary file: {audio_path}")
# Load audio
logger.info(f"Loading audio from {audio_path}")
audio, sr = torchaudio.load(audio_path)
# Convert to mono if stereo
if audio.shape[0] > 1:
logger.info(f"Converting {audio.shape[0]} channels to mono")
audio = torch.mean(audio, dim=0, keepdim=True)
# Remove first dimension if it's 1
if audio.shape[0] == 1:
audio = audio.squeeze(0)
# Resample if necessary
if sr != self.sample_rate:
logger.info(f"Resampling from {sr}Hz to {self.sample_rate}Hz")
audio = torchaudio.functional.resample(
audio, orig_freq=sr, new_freq=self.sample_rate
)
# Get audio duration
duration_seconds = len(audio) / self.sample_rate
# Process audio for better quality
logger.info(f"Preprocessing audio for quality enhancement")
processed_audio = self._preprocess_audio(audio)
processed_duration = len(processed_audio) / self.sample_rate
logger.info(
f"Processed audio: original duration={duration_seconds:.2f}s, "
f"processed duration={processed_duration:.2f}s"
)
return processed_audio, transcript, duration_seconds
except Exception as e:
logger.error(f"Error processing audio: {e}", exc_info=True)
raise RuntimeError(f"Failed to process audio file: {e}")
finally:
# Clean up temp file if we created one
if temp_path and os.path.exists(temp_path):
try:
os.unlink(temp_path)
logger.debug(f"Deleted temporary file {temp_path}")
except Exception as e:
logger.warning(f"Failed to delete temporary file {temp_path}: {e}")
def _preprocess_audio(self, audio: torch.Tensor) -> torch.Tensor:
"""
Preprocess audio for better voice cloning quality.
Args:
audio: Raw audio tensor
Returns:
Processed audio tensor
"""
# Normalize volume
if torch.max(torch.abs(audio)) > 0:
audio = audio / torch.max(torch.abs(audio))
# Remove silence with dynamic threshold
audio = self._remove_silence(audio, threshold=0.02) # Slightly higher threshold to remove more noise
# Remove DC offset (very low frequency noise)
audio = audio - torch.mean(audio)
# Apply simple noise reduction
# This filters out very high frequencies that might contain noise
try:
audio_np = audio.cpu().numpy()
from scipy import signal
# Apply a bandpass filter to focus on speech frequencies (80Hz - 8000Hz)
sos = signal.butter(3, [80, 8000], 'bandpass', fs=self.sample_rate, output='sos')
filtered = signal.sosfilt(sos, audio_np)
# Normalize the filtered audio
filtered = filtered / (np.max(np.abs(filtered)) + 1e-8)
# Convert back to torch tensor
audio = torch.tensor(filtered, device=audio.device)
except Exception as e:
logger.warning(f"Advanced audio filtering failed, using basic processing: {e}")
# Ensure audio has correct amplitude
audio = audio * 0.9 # Slightly reduce volume to prevent clipping
return audio
def _remove_silence(
self,
audio: torch.Tensor,
threshold: float = 0.015,
min_silence_duration: float = 0.2
) -> torch.Tensor:
"""
Remove silence from audio while preserving speech rhythm.
Args:
audio: Input audio tensor
threshold: Energy threshold for silence detection
min_silence_duration: Minimum silence duration in seconds
Returns:
Audio with silence removed
"""
# Convert to numpy for easier processing
audio_np = audio.cpu().numpy()
# Calculate energy
energy = np.abs(audio_np)
# Find regions above threshold (speech)
is_speech = energy > threshold
# Convert min_silence_duration to samples
min_silence_samples = int(min_silence_duration * self.sample_rate)
# Find speech segments
speech_segments = []
in_speech = False
speech_start = 0
for i in range(len(is_speech)):
if is_speech[i] and not in_speech:
# Start of speech segment
in_speech = True
speech_start = i
elif not is_speech[i] and in_speech:
# Potential end of speech segment
# Only end if silence is long enough
silence_count = 0
for j in range(i, min(len(is_speech), i + min_silence_samples)):
if not is_speech[j]:
silence_count += 1
else:
break
if silence_count >= min_silence_samples:
# End of speech segment
in_speech = False
speech_segments.append((speech_start, i))
# Handle case where audio ends during speech
if in_speech:
speech_segments.append((speech_start, len(is_speech)))
# If no speech segments found, return original audio
if not speech_segments:
logger.warning("No speech segments detected, returning original audio")
return audio
# Add small buffer around segments
buffer_samples = int(0.05 * self.sample_rate) # 50ms buffer
processed_segments = []
for start, end in speech_segments:
buffered_start = max(0, start - buffer_samples)
buffered_end = min(len(audio_np), end + buffer_samples)
processed_segments.append(audio_np[buffered_start:buffered_end])
# Concatenate all segments with small pauses between them
small_pause = np.zeros(int(0.15 * self.sample_rate)) # 150ms pause
result = processed_segments[0]
for segment in processed_segments[1:]:
result = np.concatenate([result, small_pause, segment])
return torch.tensor(result, device=audio.device)
def _enhance_speech(self, audio: torch.Tensor) -> torch.Tensor:
"""Enhance speech quality for better cloning results."""
# This is a placeholder for more advanced speech enhancement
# In a production implementation, you could add:
# - Noise reduction
# - Equalization for speech frequencies
# - Gentle compression for better dynamics
return audio
async def clone_voice(
self,
audio_file: Union[UploadFile, BinaryIO, str],
voice_name: str,
transcript: Optional[str] = None,
description: Optional[str] = None,
speaker_id: Optional[int] = None # Make this optional
) -> ClonedVoice:
"""
Clone a voice from an audio file.
Args:
audio_file: Audio file with the voice to clone
voice_name: Name for the cloned voice
transcript: Transcript of the audio (optional)
description: Description of the voice (optional)
speaker_id: Speaker ID to use (default: auto-assigned)
Returns:
ClonedVoice object with voice information
"""
logger.info(f"Cloning new voice '{voice_name}' from audio file")
# Process the audio file
processed_audio, provided_transcript, duration = await self.process_audio_file(
audio_file, transcript
)
# Use a better speaker ID assignment - use a small number similar to the built-in voices
# This prevents issues with the speaker ID being interpreted as speech
if speaker_id is None:
# Use a number between 10-20 to avoid conflicts with built-in voices (0-5)
# but not too large like 999 which might cause issues
existing_ids = [v.speaker_id for v in self.cloned_voices.values()]
for potential_id in range(10, 20):
if potential_id not in existing_ids:
speaker_id = potential_id
break
else:
# If all IDs in range are taken, use a fallback
speaker_id = 10
# Generate a unique ID for the voice
voice_id = f"{int(time.time())}_{voice_name.lower().replace(' ', '_')}"
# Create directory for the voice
voice_dir = os.path.join(CLONED_VOICES_DIR, voice_id)
os.makedirs(voice_dir, exist_ok=True)
# Save the processed audio
audio_path = os.path.join(voice_dir, "reference.wav")
torchaudio.save(audio_path, processed_audio.unsqueeze(0).cpu(), self.sample_rate)
# Save the transcript if provided
if provided_transcript:
transcript_path = os.path.join(voice_dir, "transcript.txt")
with open(transcript_path, "w") as f:
f.write(provided_transcript)
# Create and save voice info
voice_info = ClonedVoice(
id=voice_id,
name=voice_name,
created_at=time.time(),
speaker_id=speaker_id,
description=description,
audio_duration=duration,
sample_count=len(processed_audio)
)
# Save voice info as JSON
import json
with open(os.path.join(voice_dir, "info.json"), "w") as f:
f.write(json.dumps(voice_info.dict()))
# Add to cloned voices dictionary
self.cloned_voices[voice_id] = voice_info
logger.info(f"Voice '{voice_name}' cloned successfully with ID: {voice_id} and speaker_id: {speaker_id}")
return voice_info
def get_voice_context(self, voice_id: str) -> List[Segment]:
"""
Get context segments for a cloned voice.
Args:
voice_id: ID of the cloned voice
Returns:
List of context segments for the voice
"""
if voice_id not in self.cloned_voices:
logger.warning(f"Voice ID {voice_id} not found")
return []
voice = self.cloned_voices[voice_id]
voice_dir = os.path.join(CLONED_VOICES_DIR, voice_id)
audio_path = os.path.join(voice_dir, "reference.wav")
if not os.path.exists(audio_path):
logger.error(f"Audio file for voice {voice_id} not found at {audio_path}")
return []
try:
# Load the audio
audio, sr = torchaudio.load(audio_path)
audio = audio.squeeze(0)
# Resample if necessary
if sr != self.sample_rate:
audio = torchaudio.functional.resample(
audio, orig_freq=sr, new_freq=self.sample_rate
)
# Trim to a maximum of 5 seconds to avoid sequence length issues
# This is a balance between voice quality and model limitations
max_samples = 5 * self.sample_rate # 5 seconds
if audio.shape[0] > max_samples:
logger.info(f"Trimming voice sample from {audio.shape[0]} to {max_samples} samples")
# Take from beginning for better voice characteristics
audio = audio[:max_samples]
# Load transcript if available
transcript_path = os.path.join(voice_dir, "transcript.txt")
transcript = ""
if os.path.exists(transcript_path):
with open(transcript_path, "r") as f:
full_transcript = f.read()
# Take a portion of transcript that roughly matches our audio portion
words = full_transcript.split()
# Estimate 3 words per second as a rough average
word_count = min(len(words), int(5 * 3)) # 5 seconds * 3 words/second
transcript = " ".join(words[:word_count])
else:
transcript = f"Voice sample for {voice.name}"
# Create context segment
segment = Segment(
text=transcript,
speaker=voice.speaker_id,
audio=audio.to(self.device)
)
logger.info(f"Created voice context segment with {audio.shape[0]/self.sample_rate:.1f}s audio")
return [segment]
except Exception as e:
logger.error(f"Error getting voice context for {voice_id}: {e}")
return []
def list_voices(self) -> List[ClonedVoice]:
"""List all available cloned voices."""
return list(self.cloned_voices.values())
def delete_voice(self, voice_id: str) -> bool:
"""
Delete a cloned voice.
Args:
voice_id: ID of the voice to delete
Returns:
True if successful, False otherwise
"""
if voice_id not in self.cloned_voices:
return False
voice_dir = os.path.join(CLONED_VOICES_DIR, voice_id)
if os.path.exists(voice_dir):
try:
import shutil
shutil.rmtree(voice_dir)
del self.cloned_voices[voice_id]
return True
except Exception as e:
logger.error(f"Error deleting voice {voice_id}: {e}")
return False
return False
async def clone_voice_from_youtube(
self, # Don't forget the self parameter for class methods
youtube_url: str,
voice_name: str,
start_time: int = 0,
duration: int = 180,
description: str = None
) -> ClonedVoice:
"""
Clone a voice from a YouTube video.
Args:
youtube_url: URL of the YouTube video
voice_name: Name for the cloned voice
start_time: Start time in seconds
duration: Duration to extract in seconds
description: Optional description of the voice
Returns:
ClonedVoice object with voice information
"""
logger.info(f"Cloning voice '{voice_name}' from YouTube: {youtube_url}")
# Create temporary directory for processing
with tempfile.TemporaryDirectory() as temp_dir:
# Step 1: Download audio from YouTube
audio_path = await self._download_youtube_audio(youtube_url, temp_dir, start_time, duration)
# Step 2: Generate transcript using WhisperX
transcript = await self._generate_transcript(audio_path)
# Step 3: Clone the voice using the extracted audio and transcript
voice = await self.clone_voice(
audio_file=audio_path,
voice_name=voice_name,
transcript=transcript,
description=description or f"Voice cloned from YouTube: {youtube_url}"
)
return voice
async def _download_youtube_audio(
self, # Don't forget the self parameter
url: str,
output_dir: str,
start_time: int = 0,
duration: int = 180
) -> str:
"""
Download audio from a YouTube video.
Args:
url: YouTube URL
output_dir: Directory to save the audio
start_time: Start time in seconds
duration: Duration to extract in seconds
Returns:
Path to the downloaded audio file
"""
output_path = os.path.join(output_dir, "youtube_audio.wav")
# Configure yt-dlp options
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
'outtmpl': output_path.replace(".wav", ""),
'quiet': True,
'no_warnings': True
}
# Download the video
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Trim the audio to the specified segment
if start_time > 0 or duration < float('inf'):
import ffmpeg
trimmed_path = os.path.join(output_dir, "trimmed_audio.wav")
# Use ffmpeg to trim the audio
(
ffmpeg.input(output_path)
.audio
.filter('atrim', start=start_time, duration=duration)
.output(trimmed_path)
.run(quiet=True, overwrite_output=True)
)
return trimmed_path
return output_path
async def _generate_transcript(self, audio_path: str) -> str:
"""
Generate transcript from audio using WhisperX (faster than standard Whisper).
Args:
audio_path: Path to the audio file
Returns:
Transcript text
"""
global _whisperx_model
try:
# Use device with CUDA if available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use lock to ensure model loading is thread-safe
async with _whisperx_model_lock:
# Load WhisperX model if not already loaded
if _whisperx_model is None:
logger.info("Loading WhisperX model for transcription (one-time initialization)")
compute_type = "float16" if device == "cuda" else "float32"
_whisperx_model = whisperx.load_model(
"medium", # Can use "small" for faster processing, "medium" for better quality
device,
compute_type=compute_type,
asr_options={"beam_size": 5}
)
logger.info(f"WhisperX model loaded on {device}")
# Start processing timer
start_time = time.time()
# Process with WhisperX - much faster than standard whisper,
# especially for longer files
logger.info(f"Transcribing audio with WhisperX on {device}")
result = _whisperx_model.transcribe(
audio_path,
batch_size=16 if device == "cuda" else 1 # Larger batch size on GPU for faster processing
)
# Calculate and log processing time
processing_time = time.time() - start_time
logger.info(f"Transcription completed in {processing_time:.2f}s")
return result["text"]
except Exception as e:
logger.error(f"WhisperX transcription failed: {e}", exc_info=True)
# Fallback to conventional approach if WhisperX fails
logger.warning("Falling back to basic transcription method")
try:
model = whisperx.load_model("small", device, compute_type="float32")
result = model.transcribe(audio_path, batch_size=1)
return result["text"]
except Exception as fallback_error:
logger.error(f"Fallback transcription also failed: {fallback_error}")
return "Transcription failed. Please provide a transcript manually."
def generate_speech(
self,
text: str,
voice_id: str,
temperature: float = 0.65,
topk: int = 30,
max_audio_length_ms: int = 15000
) -> torch.Tensor:
"""
Generate speech with a cloned voice.
Args:
text: Text to synthesize
voice_id: ID of the cloned voice to use
temperature: Sampling temperature (lower = more stable, higher = more varied)
topk: Top-k sampling parameter
max_audio_length_ms: Maximum audio length in milliseconds
Returns:
Generated audio tensor
"""
# Remove any async/await keywords - this is a synchronous function
if voice_id not in self.cloned_voices:
raise ValueError(f"Voice ID {voice_id} not found")
voice = self.cloned_voices[voice_id]
context = self.get_voice_context(voice_id)
if not context:
raise ValueError(f"Could not get context for voice {voice_id}")
# Preprocess text for better pronunciation
processed_text = self._preprocess_text(text)
logger.info(f"Generating speech with voice '{voice.name}' (ID: {voice_id}, speaker: {voice.speaker_id})")
try:
# Check if text is too long and should be split
if len(processed_text) > 200:
logger.info(f"Text is long ({len(processed_text)} chars), splitting for better quality")
from app.prompt_engineering import split_into_segments
# Split text into manageable segments
segments = split_into_segments(processed_text, max_chars=150)
logger.info(f"Split text into {len(segments)} segments")
all_audio_chunks = []
# Process each segment
for i, segment_text in enumerate(segments):
logger.info(f"Generating segment {i+1}/{len(segments)}")
# Generate this segment - using plain text without formatting
segment_audio = self.generator.generate(
text=segment_text, # Use plain text, no formatting
speaker=voice.speaker_id,
context=context,
max_audio_length_ms=min(max_audio_length_ms, 10000),
temperature=temperature,
topk=topk,
)
all_audio_chunks.append(segment_audio)
# Use this segment as context for the next one for consistency
if i < len(segments) - 1:
context = [
Segment(
text=segment_text,
speaker=voice.speaker_id,
audio=segment_audio
)
]
# Combine chunks with small silence between them
if len(all_audio_chunks) == 1:
audio = all_audio_chunks[0]
else:
silence_samples = int(0.1 * self.sample_rate) # 100ms silence
silence = torch.zeros(silence_samples, device=all_audio_chunks[0].device)
# Join segments with silence
audio_parts = []
for i, chunk in enumerate(all_audio_chunks):
audio_parts.append(chunk)
if i < len(all_audio_chunks) - 1: # Don't add silence after the last chunk
audio_parts.append(silence)
# Concatenate all parts
audio = torch.cat(audio_parts)
return audio
else:
# For short text, generate directly - using plain text without formatting
audio = self.generator.generate(
text=processed_text, # Use plain text, no formatting
speaker=voice.speaker_id,
context=context,
max_audio_length_ms=max_audio_length_ms,
temperature=temperature,
topk=topk,
)
return audio
except Exception as e:
logger.error(f"Error generating speech with voice {voice_id}: {e}")
raise
def _preprocess_text(self, text: str) -> str:
"""Preprocess text for better pronunciation and voice cloning."""
# Make sure text ends with punctuation for better phrasing
text = text.strip()
if not text.endswith(('.', '?', '!', ';')):
text = text + '.'
return text
|