Spaces:
Running
Running
File size: 10,075 Bytes
383520d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
"""Torchtune models for CSM-1B."""
import logging
from dataclasses import dataclass
import torch
import torch.nn as nn
# Set up logging
logger = logging.getLogger(__name__)
# First, try to import llama3_2 from torchtune directly
try:
import torchtune
logger.info(f"Torchtune version: {getattr(torchtune, '__version__', 'unknown')}")
# Print available modules in torchtune.models
try:
import torchtune.models
logger.info(f"Available modules in torchtune.models: {dir(torchtune.models)}")
except Exception as e:
logger.error(f"Error inspecting torchtune.models: {e}")
# Try to import llama3_2 model
try:
from torchtune.models.llama3_2 import llama3_2
logger.info("Successfully imported llama3_2 from torchtune")
except ImportError as e:
logger.warning(f"Could not import llama3_2: {e}")
# Try to import regular llama as fallback
try:
from torchtune.models.llama import llama
logger.info("Using llama from torchtune.models.llama as fallback")
llama3_2 = llama # Alias llama as llama3_2
except ImportError:
logger.error("Could not import llama model either. Will use custom implementation.")
llama3_2 = None
except ImportError as e:
logger.error(f"Torchtune not available: {e}")
torchtune = None
llama3_2 = None
# Define our own model implementations as fallbacks
def llama3_2_1B_custom():
"""Create a Llama 3.2 1B model."""
from app.custom_transformer import CustomTransformerDecoder
return CustomTransformerDecoder(
vocab_size=128_256,
num_layers=16,
num_heads=32,
num_kv_heads=8,
embed_dim=2048,
max_seq_len=2048,
intermediate_dim=8192,
attn_dropout=0.0,
norm_eps=1e-5,
)
def llama3_2_100M_custom():
"""Create a Llama 3.2 100M model."""
from app.custom_transformer import CustomTransformerDecoder
return CustomTransformerDecoder(
vocab_size=128_256,
num_layers=4,
num_heads=8,
num_kv_heads=2,
embed_dim=1024,
max_seq_len=2048,
intermediate_dim=8192,
attn_dropout=0.0,
norm_eps=1e-5,
)
# Setup fallback to our own implementations if needed
if llama3_2 is None:
logger.warning("Using custom implementations for Llama models")
FLAVORS = {
"llama-1B": llama3_2_1B_custom,
"llama-100M": llama3_2_100M_custom,
}
else:
logger.info("Using torchtune implementations for Llama models")
FLAVORS = {
"llama-1B": lambda: llama3_2(
vocab_size=128_256,
num_layers=16,
num_heads=32,
num_kv_heads=8,
embed_dim=2048,
max_seq_len=2048,
intermediate_dim=8192,
attn_dropout=0.0,
norm_eps=1e-5,
rope_base=500_000,
scale_factor=32,
),
"llama-100M": lambda: llama3_2(
vocab_size=128_256,
num_layers=4,
num_heads=8,
num_kv_heads=2,
embed_dim=1024,
max_seq_len=2048,
intermediate_dim=8192,
attn_dropout=0.0,
norm_eps=1e-5,
rope_base=500_000,
scale_factor=32,
),
}
def _prepare_transformer(model):
"""Prepare transformer for use."""
embed_dim = model.tok_embeddings.embedding_dim
model.tok_embeddings = nn.Identity()
model.output = nn.Identity()
return model, embed_dim
def _create_causal_mask(seq_len: int, device: torch.device):
"""Create causal mask."""
return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))
def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor):
"""Index causal mask.
Args:
mask: (max_seq_len, max_seq_len)
input_pos: (batch_size, seq_len)
Returns:
(batch_size, seq_len, max_seq_len)
"""
r = mask[input_pos, :]
return r
def _multinomial_sample_one_no_sync(probs):
"""Do multinomial sampling without a cuda synchronization."""
q = torch.empty_like(probs).exponential_(1)
return torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int)
def sample_topk(logits: torch.Tensor, topk: int, temperature: float):
"""Sample from top-k logits."""
logits = logits / temperature
filter_value: float = -float("Inf")
indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None]
scores_processed = logits.masked_fill(indices_to_remove, filter_value)
scores_processed = torch.nn.functional.log_softmax(scores_processed, dim=-1)
probs = torch.nn.functional.softmax(scores_processed, dim=-1)
sample_token = _multinomial_sample_one_no_sync(probs)
return sample_token
@dataclass
class ModelArgs:
"""Model arguments."""
backbone_flavor: str
decoder_flavor: str
text_vocab_size: int
audio_vocab_size: int
audio_num_codebooks: int
class Model(nn.Module):
"""CSM-1B model."""
def __init__(self, args: ModelArgs):
"""Initialize model."""
super().__init__()
self.args = args
logger.info(f"Creating model with backbone: {args.backbone_flavor}, decoder: {args.decoder_flavor}")
# Load backbone and decoder
self.backbone, backbone_dim = _prepare_transformer(FLAVORS[args.backbone_flavor]())
self.decoder, decoder_dim = _prepare_transformer(FLAVORS[args.decoder_flavor]())
# Embeddings
self.text_embeddings = nn.Embedding(args.text_vocab_size, backbone_dim)
self.audio_embeddings = nn.Embedding(args.audio_vocab_size * args.audio_num_codebooks, backbone_dim)
# Projection and heads
self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False)
self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False)
self.audio_head = nn.Parameter(torch.empty(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size))
# Initialize audio head
nn.init.normal_(self.audio_head, mean=0.0, std=0.02)
def setup_caches(self, max_batch_size: int) -> torch.Tensor:
"""Setup KV caches and return a causal mask."""
dtype = next(self.parameters()).dtype
device = next(self.parameters()).device
with device:
self.backbone.setup_caches(max_batch_size, dtype)
self.decoder.setup_caches(max_batch_size, dtype, decoder_max_seq_len=self.args.audio_num_codebooks)
self.register_buffer("backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device))
self.register_buffer("decoder_causal_mask", _create_causal_mask(self.args.audio_num_codebooks, device))
def generate_frame(
self,
tokens: torch.Tensor,
tokens_mask: torch.Tensor,
input_pos: torch.Tensor,
temperature: float,
topk: int,
) -> torch.Tensor:
"""Generate a frame of audio tokens.
Args:
tokens: (batch_size, seq_len, audio_num_codebooks+1)
tokens_mask: (batch_size, seq_len, audio_num_codebooks+1)
input_pos: (batch_size, seq_len) positions for each token
Returns:
(batch_size, audio_num_codebooks) sampled tokens
"""
dtype = next(self.parameters()).dtype
b, s = tokens.size()[:2]
assert self.backbone.caches_are_enabled(), "backbone caches are not enabled"
curr_backbone_mask = _index_causal_mask(self.backbone_causal_mask, input_pos)
embeds = self._embed_tokens(tokens)
masked_embeds = embeds * tokens_mask.unsqueeze(-1)
h = masked_embeds.sum(dim=2)
h = self.backbone(h, input_pos=input_pos, mask=curr_backbone_mask).to(dtype=dtype)
last_h = h[:, -1, :]
c0_logits = self.codebook0_head(last_h)
c0_sample = sample_topk(c0_logits, topk, temperature)
c0_embed = self._embed_audio(0, c0_sample)
curr_h = torch.cat([last_h.unsqueeze(1), c0_embed], dim=1)
curr_sample = c0_sample.clone()
curr_pos = torch.arange(0, curr_h.size(1), device=curr_h.device).unsqueeze(0).repeat(curr_h.size(0), 1)
# Decoder caches must be reset every frame.
self.decoder.reset_caches()
for i in range(1, self.args.audio_num_codebooks):
curr_decoder_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos)
decoder_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=curr_decoder_mask).to(
dtype=dtype
)
ci_logits = torch.mm(decoder_h[:, -1, :], self.audio_head[i - 1])
ci_sample = sample_topk(ci_logits, topk, temperature)
ci_embed = self._embed_audio(i, ci_sample)
curr_h = ci_embed
curr_sample = torch.cat([curr_sample, ci_sample], dim=1)
curr_pos = curr_pos[:, -1:] + 1
return curr_sample
def reset_caches(self):
"""Reset KV caches."""
self.backbone.reset_caches()
self.decoder.reset_caches()
def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor:
"""Embed audio tokens."""
return self.audio_embeddings(tokens + codebook * self.args.audio_vocab_size)
def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor:
"""Embed tokens."""
text_embeds = self.text_embeddings(tokens[:, :, -1]).unsqueeze(-2)
audio_tokens = tokens[:, :, :-1] + (
self.args.audio_vocab_size * torch.arange(self.args.audio_num_codebooks, device=tokens.device)
)
audio_embeds = self.audio_embeddings(audio_tokens.view(-1)).reshape(
tokens.size(0), tokens.size(1), self.args.audio_num_codebooks, -1
)
return torch.cat([audio_embeds, text_embeds], dim=-2) |