Spaces:
Running
Running
File size: 11,145 Bytes
383520d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
"""Custom transformer implementation for fallback."""
import torch
import torch.nn as nn
import math
import logging
# Set up logging
logger = logging.getLogger(__name__)
class RMSNorm(nn.Module):
"""Root Mean Square Layer Normalization."""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
# Calculate RMS
rms = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return self.weight * rms * x
class RotaryEmbedding(nn.Module):
"""Rotary positional embedding."""
def __init__(self, dim, max_seq_len=2048, base=10000):
super().__init__()
self.dim = dim
self.max_seq_len = max_seq_len
self.base = base
# Generate frequency tensor
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
# Generate cos and sin cache
self._update_cos_sin_cache(max_seq_len)
def _update_cos_sin_cache(self, max_seq_len):
"""Update the cache of cos and sin values."""
self.max_seq_len = max_seq_len
t = torch.arange(max_seq_len, device=self.inv_freq.device)
# Compute cos and sin at each position
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
cos = freqs.cos()
sin = freqs.sin()
self.register_buffer("cos_cache", cos, persistent=False)
self.register_buffer("sin_cache", sin, persistent=False)
def forward(self, x, seq_len=None, pos=None):
# Get appropriate parts of the cache
if pos is not None:
# Handle arbitrary positions
cos = self.cos_cache[pos]
sin = self.sin_cache[pos]
else:
# Handle sequential positions
seq_len = x.shape[1] if seq_len is None else seq_len
cos = self.cos_cache[:seq_len]
sin = self.sin_cache[:seq_len]
return cos, sin
def rotate_half(x):
"""Rotate half the dimensions of the input."""
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None):
"""Apply rotary position embedding to q and k."""
if position_ids is not None:
# Handle arbitrary positions
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
else:
# Handle sequential positions
cos = cos.unsqueeze(0).unsqueeze(0) # [1, 1, seq_len, dim]
sin = sin.unsqueeze(0).unsqueeze(0) # [1, 1, seq_len, dim]
# Apply rotation
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class CustomAttention(nn.Module):
"""Multi-head attention with support for KV caching."""
def __init__(self, dim, num_heads, num_kv_heads=None, dropout=0.0):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads or num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
# Attention projections
self.q_proj = nn.Linear(dim, num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(dim, self.num_kv_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(dim, self.num_kv_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(num_heads * self.head_dim, dim, bias=False)
# Rotary embedding
self.rope = RotaryEmbedding(self.head_dim)
# Dropout
self.dropout = nn.Dropout(dropout)
def _repeat_kv(self, x):
"""Repeat KV heads to match the number of query heads."""
if self.num_kv_heads == self.num_heads:
return x
b, s, n_kv_head, head_dim = x.shape
# Repeat the KV heads to match the number of query heads
repeats = self.num_heads // self.num_kv_heads
x = x.repeat_interleave(repeats, dim=2)
return x
def forward(self, x, mask=None, input_pos=None, kv_cache=None):
batch_size, seq_len, _ = x.shape
# Project to q, k, v
q = self.q_proj(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) # [b, nh, s, hd]
k = self.k_proj(x).view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2) # [b, nkh, s, hd]
v = self.v_proj(x).view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2) # [b, nkh, s, hd]
# Apply rotary embeddings
cos, sin = self.rope.forward(x, seq_len=seq_len, pos=input_pos)
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids=input_pos)
# Handle KV cache
if kv_cache is not None:
k_cache, v_cache = kv_cache
if input_pos is not None:
# Update cache at specific positions
k_cache.index_copy_(2, input_pos, k)
v_cache.index_copy_(2, input_pos, v)
# Use the entire cache
k, v = k_cache, v_cache
# Repeat KV if needed
k = self._repeat_kv(k)
v = self._repeat_kv(v)
# Calculate attention scores
attention_scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
# Apply mask if provided
if mask is not None:
attention_scores = attention_scores.masked_fill(mask == 0, -10000.0)
# Apply softmax and dropout
attention_probs = self.dropout(torch.softmax(attention_scores, dim=-1))
# Get context vector
context = torch.matmul(attention_probs, v)
# Reshape and project back
context = context.transpose(1, 2).contiguous().view(batch_size, seq_len, -1)
output = self.o_proj(context)
return output
class FeedForward(nn.Module):
"""Feed-forward network with GELU activation."""
def __init__(self, dim, hidden_dim, dropout=0.0):
super().__init__()
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.dropout = nn.Dropout(dropout)
self.act = nn.GELU()
def forward(self, x):
x = self.w1(x)
x = self.act(x)
x = self.dropout(x)
x = self.w2(x)
return x
class TransformerLayer(nn.Module):
"""A single transformer layer."""
def __init__(
self,
dim,
num_heads,
num_kv_heads=None,
ffn_dim=None,
dropout=0.0,
norm_eps=1e-5
):
super().__init__()
self.norm1 = RMSNorm(dim, eps=norm_eps)
self.attn = CustomAttention(dim, num_heads, num_kv_heads, dropout)
self.norm2 = RMSNorm(dim, eps=norm_eps)
self.ffn = FeedForward(
dim,
ffn_dim or 4 * dim,
dropout
)
def forward(self, x, mask=None, input_pos=None, kv_cache=None):
# Self-attention with residual
h = self.norm1(x)
h = self.attn(h, mask=mask, input_pos=input_pos, kv_cache=kv_cache)
x = x + h
# FFN with residual
h = self.norm2(x)
h = self.ffn(h)
x = x + h
return x
class CustomTransformerDecoder(nn.Module):
"""Custom transformer decoder that mimics Llama architecture."""
def __init__(
self,
vocab_size,
num_layers,
num_heads,
num_kv_heads,
embed_dim,
max_seq_len,
intermediate_dim,
attn_dropout=0.0,
norm_eps=1e-5,
rope_base=10000,
):
super().__init__()
self.vocab_size = vocab_size
self.max_seq_len = max_seq_len
self.embed_dim = embed_dim
# Token embeddings
self.tok_embeddings = nn.Embedding(vocab_size, embed_dim)
# Transformer layers
self.layers = nn.ModuleList([
TransformerLayer(
embed_dim,
num_heads,
num_kv_heads,
intermediate_dim,
attn_dropout,
norm_eps
)
for _ in range(num_layers)
])
# Final normalization and output projection
self.norm = RMSNorm(embed_dim, eps=norm_eps)
self.output = nn.Linear(embed_dim, vocab_size, bias=False)
# Initialize the KV cache
self._kv_cache = None
self._has_cache = False
logger.info(f"Initialized CustomTransformerDecoder with {num_layers} layers, {num_heads} heads, {embed_dim} dim")
def setup_caches(self, batch_size, dtype, decoder_max_seq_len=None):
"""Set up KV caches for inference."""
max_seq_len = decoder_max_seq_len or self.max_seq_len
device = next(self.parameters()).device
self._kv_cache = []
for i, layer in enumerate(self.layers):
# Create a KV cache for each layer
k_cache = torch.zeros(
batch_size,
layer.attn.num_kv_heads,
max_seq_len,
layer.attn.head_dim,
device=device,
dtype=dtype
)
v_cache = torch.zeros(
batch_size,
layer.attn.num_kv_heads,
max_seq_len,
layer.attn.head_dim,
device=device,
dtype=dtype
)
self._kv_cache.append((k_cache, v_cache))
self._has_cache = True
logger.info(f"KV caches set up for {batch_size} batches, {max_seq_len} seq length")
def caches_are_enabled(self):
"""Check if caches are enabled."""
return self._has_cache
def reset_caches(self):
"""Reset the KV cache to zeros."""
if self._has_cache and self._kv_cache:
for k_cache, v_cache in self._kv_cache:
k_cache.zero_()
v_cache.zero_()
def forward(self, x, mask=None, input_pos=None):
batch_size, seq_len = x.shape[:2]
# Apply embedding if input is token IDs
if x.dim() == 2:
x = self.tok_embeddings(x)
# Apply transformer layers
for i, layer in enumerate(self.layers):
layer_cache = self._kv_cache[i] if self._has_cache else None
x = layer(x, mask=mask, input_pos=input_pos, kv_cache=layer_cache)
# Apply final norm
x = self.norm(x)
# Skip output projection if using Identity
if isinstance(self.output, nn.Identity):
return x
# Apply output projection
logits = self.output(x)
return logits
|